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ASR Context-Sensitive Error Correction
Based on Microsoft N-Gram Dataset

Youssef Bassil, Paul Semaan

Abstract—At the present time, computers are employed to solve complex tasks and problems ranging from simple calculations
to intensive digital image processing and intricate algorithmic optimization problems to computationally-demanding weather
forecasting problems. ASR short for Automatic Speech Recognition is yet another type of computational problem whose purpose
is to recognize human spoken speech and convert it into text that can be processed by a computer. Despite that ASR has many
versatile and pervasive real-world applications,it is still relatively erroneous and not perfectly solved as it is prone to produce
spelling errors in the recognized text, especially if the ASR system is operating in a noisy environment, its vocabulary size is
limited, and its input speech is of bad or low quality. This paper proposes a post-editing ASR error correction method based on
MicrosoftN-Gram dataset for detecting and correcting spelling errors generated by ASR systems. The proposed method
comprises an error detection algorithm for detecting word errors; a candidate corrections generation algorithm for generating
correction suggestions for the detected word errors; and a context-sensitive error correction algorithm for selecting the best
candidate for correction. The virtue of using the Microsoft N-Gram dataset is that it contains real-world data and word sequences
extracted from the web which canmimica comprehensive dictionary of words having a large and all-inclusive vocabulary.
Experiments conducted on numerous speeches, performed by different speakers, showed a remarkable reduction in ASR errors.
Future research can improve upon the proposed algorithm so much so that it can be parallelized to take advantage of

multiprocessor and distributed systems.

Index Terms—-Artificial Intelligence, Natural Language Processing, Speech Recognition and Synthesis, Error Correction

1INTRODUCTION

ith the advancement of information technologies,
Wcomputers are no more exclusively used for

performing mathematical and scientific operations.
Instead, miscellaneous applications are now possible,
allowing computers to solve versatile problems
pertaining to different fields and domains. ASR short for
Automatic Speech Recognition has been a subject of great
focus and attention in recent years as it has been studied
and researched by severalscientists, universities, and
research centers. Inherently, ASR converts spoken words
represented mathematically as an acoustic waveform into
text that can be processed by a computer [1].Speech-To-
Text (STT), Automated Telephone Services (ATS), Voice
User Interface (VUI), Voice-driven Home Automation
(Domotics), and Speech Dictation are few ASR
applications to mention.

In spite of the great advantages and benefits of ASR, it
isstill error-prone and imperfect as it produces spelling
errors in the recognized output text. Commonly, ASR
errors are manifested as linguistic mistakes and
misspellings visible at the final output of the system.
These errors are often caused by the extreme noise in
theenvironment, the bad quality of the speech, the
fluctuating utterance of the dialogue, and the small size of

o Youssef Bassil is the Chief Science Officer of the Lebanese Association for
Computational Sciences, (LACSC), reg. no. 957, 2011, Beirut, Lebanon.

o Paul Semaan is a senior researcher at the Lebanese Association for
Computational Sciences, (LACSC), reg. no. 957, 2011, Beirut, Lebanon.

the ASR vocabulary [2], [3].

Numerous error-correction methods and algorithms
were devised to help fight against ASR errors, some of
themrely on post-processing the output text and
correcting it manually;whereas others rely on building
improved acoustic models to increase the precision of
speech recognition [4]. Regardless of all these attempts
focused on reducing the ASR error rate, results are not yet
convincing and speech recognition systems still suffer a
major degradation in performance.

This paper proposes a post-editing ASR error
correction method for detecting and correcting non-word
and real-word errors generated by ASR recognition
systems, based on data extracted from Microsoft Web N-
Gram dataset [5]. Principally, the Microsoft Web N-Gram
datasetenclosespetabytes ofn-gram word counts and
statistics retrieved from the Internet and Bing search
engine [6], and is appropriate for carrying out text
spelling correction. The proposed approach is a post-
editing process which spell-checks the final recognized
output text after the input wave has been completely
converted.Itis majorly composed of three foremost
algorithms: An error detection algorithmthat detects non-
word errors in the ASRoutput text using unigram
information from Microsoft Web N-Gram dataset; a
candidate corrections generationalgorithmthatgenerates
possible correction spellings for the misspelled words
using a character-based2-gram model; and a context-
sensitivereal-word error correction algorithmthatpicks
out the closest candidate for correction using 5-gram
counts from Microsoft Web N-Gram dataset. In effect, as
the proposed techniquemakes use of real-world web-scale



JOURNAL OF COMPUTING, VOLUME 4, ISSUE 1, JANUARY 2012, ISSN 2151-9617

https://sites.google.com/site/journalofcomputing
WWW.JOURNALOFCOMPUTING.ORG

data, it can significantly decrease the ASR error rate and
consequently improve theperformance of ASR systems.

2AUTOMATIC SPEECH RECOGNITION

As defined by many textbooks [7], [8], and [9], automatic
speech recognition systems also known as ASR, receive
some speech signals as input and generate a
corresponding readable text transcript as output. Put
differently, it simply converts spoken words into text.
Figure 1 shows a speech recognition system in which a
voice W usually generated by a speaker such a human
person, propagates as a waveform into the
communication channel where it is analyzed and
processed to eventually be transformed into a readable
text W',

Communication Channel

A

||"|j i H
i MV - H
Text : Speech . Slgna_l H Speech
Generator | Generator i | Processing | : Decoder

W X W
Speech Recognizer

Fig. 1. A Basic Speech Recognition System

Essentially, an ASR system is often implemented using
a Hidden Markov Model (HMM) [10], [11] based on the
notion of noisy channel [12]. The concept behind the
noisy channel model is to consider the input acoustic
waveform as a noisy signal which has been distorted
somehow during transmission. The quintessence of this
approach is that if one could know how the original
waveform was distorted, it is then easy to find the
original input.The Hidden Markov Model is a special
type of weighted finite-state automata, defined by a set of
N states Q=qiq1...qn; a start state go and an end state g5, a
sequence of input observations O=0i0:...0r, a set of
transitions from one state to another based on the input
observations; and two types of probabilities: The prior
probability and the likelihood probability. The former is
associated with every transition and indicates how likely
a transition is to be taken.It is represented by a transition
probability matrix A=auai...aum...am where aj represents
the probability of transiting from state i to state j. The
latter is denoted by B=bi(0:), and consists of a sequence of
observations likelihood that indicates the probability of
an observation obeing emerged from state i.

Fundamentally, an ASR system is a blend of four
logical modules [7], each of which has a particular
algorithm, purpose, and inner-workings, and they are in
order: The signal processing module, the acoustic
modeling module, the language modeling module, and
the decoding module. Figure 2 depicts a block diagram of
an automatic speech recognition system comprising four
functional modules.
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Fig. 2. Block Diagram of an ASR System

The first is the signal processing module, in which
spectral features are extracted from the input acoustic
waveform by sampling and capturing small frames out of
the input signal on a maximum interval of 20
milliseconds. The spectral features help building phone
and sub-phone classifiers. Phones are individual symbols
that model the pronunciation of a word.Computationally,
the input signal is first converted from analog to digital,
then the power of its high frequencies is amplified in a
process called Pre-emphasis with the objective of
increasing the speech detection accuracy. Afterwards, the
windowing process is introduced to divide the signal into
frames of signal speeches having a particular length
usually 25ms. These frames are separated from each other
by an offset called frame shift usually of length 10ms.
Next, the Discrete Fourier Transform (DFT) is applied to
transform the previous signal frames into a complex
number representing the phase and magnitude of the
frequency of that frame. Finally, the cepstrum is
calculated via the Inverse DFT which significantly
improves the accuracy and performance of phones
recognition. The result of this module is 39 features called
Mel Frequency Cepstral Coefficients (MFCC), which
uniquely identify a discrete acoustic phone in the input
sound.

The second is the acoustic modeling (AM) module,
which computes the likelihood of the observed spectral
feature vectors given linguistic units (phones).For
instance, it computes the likelihood P(olg) of a specific
feature vector o given a particular HMM stage g that
represents a particular phone x. For this purpose, a
lexicon of words with their corresponding phones (a
sequence of pronunciations), is used to help recognizing
the spoken words.

The third is the language modeling (LM) module,
which computes the prior probability P(W)that
approximates how likely a given sentence is to occur in
the language. P(W) is usually calculated using the
probabilistic n-gram model [13] which predicts the next
word, letter, or phone in a given sequence. In short, an n-
gram is simply a collocation of words that is n words
long.
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The fourth is the decoding module, which joins the
observation likelihood P(OIW) resulted from of the
acoustic model and the prior probability P(W) resulted
from the language model to deduce the most likely
output textW’. The products of all probabilities are
calculated P(OIW)*P(W) and the one with the greatest
value is selected as the output textW’. Figure 3 is the
mathematical equation for calculating and choosing the
most probable output textW’.

likelihood prior
N m—— ——,
W =argmax P(OW) P{W)
Ve
Fig.3.Equation for Finding the Product of the Likelihood and the Prior
Probability

3ERRORS IN SPEECH RECOGNITION SYSTEMS

An early experiment conducted at IBM research labs [14]
to calculate the number of errors generated by ASR
systems, showed an average of 105 errors being
committed per minute.Essentially, ASR errors are
relatively due to five factors:The first factor is noise which
is tightly associated withthe condition of the location in
which speech recognition is being performed.For
instance, if the recognition process occurs in a silent
environment, it yieldsto more accurate results than if it
would have been occurred in a noisy environment. Noise
adds extra signals to the speech; and hence,it alters the
content of the input waveform making it hard to be
interpreted.The second factor is the type of speech being
recognized. In fact, there exist two types of speech:
thediscrete speechalso called isolated-word speech in
which spoken words are separated by silent pauses,
andthe continuous speech which contains non-segmented
endless sequence of words that are more difficult to be
separated and distinguished by the system. Continuous
speech thus imposes more complications on the
recognitionprocess whichresult in an increase in the
ASRerror rate. The third factor is the speech utterance
which ranges from read speech to conversational speech.
Conversational speech is more problematic to handle
since it is spontaneous and may contain defects in
pronunciation.The fourth factor is the dialect of thespeech
which varies from speaker to speaker as each person has
unique spectral features. ASR systems can sometimes be
characterized as  speaker-dependentand  speaker-
independent systems. A speaker-independent system
operates for different speakers and for different type of
speakers. Such systems are more challenging to develop
and implement, and are subject to higher error rate.The
fifth factor is the size of the vocabulary that anASR
system can recognize. Basically, and since the acoustic
model (AM) is based on an internal dictionaryor lexicon
of words with their corresponding phones and
pronunciations that are necessary to match a spoken
word with an entry in the lexicon, the larger the size of
the vocabulary thelexiconhas, the less is to be the ASR
error rate. A small vocabulary can lead to a situation often
known as OOV short for Out-Of-Vocabulary which
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usually occurs when a spoken word is not found in the
acoustic model’s dictionary.This would in consequence
cause theASR system to failrecognizingthe input vocal
word.

4 LIMITATIONS OF ASR BUILT-INDICTIONARIES

The vocabulary size and the number of distinct words
that an ASRsystem can recognize play a turning point in
determining the overall error rate of the system.
Applications with fewer terms like “yes” and “no”, or
digits like “1,2,3...9” are easier to handle than those with
large volume of terms such as continuous dictation
systems that sometimes require the recognition of a hive
of terms and words. Such systems are called LVCSR
(Large-Vocabulary Continuous Speech Recognition) and
they usually need to recognize between 20,000 and 60,000
terms while achieving a good level of accuracy and a
minimal amount of errors. Since ASR systemsare often
built on traditional dictionariesthat do not cover all
wordsin the language, theysuffer from severe Out-Of-
Vocabulary(OOV) deficiencies. The reasons behind OOV
can be summarized by the following:

The first reason is thatASRsystems lack a
comprehensive dictionary that can cover every single
word in the language. For instance, the Oxford dictionary
embraces 171,476 words in current use, and 47,156
obsolete words, in addition to their derivatives which
count around 9,500 words. This suggests that there is, at
the very least, a quarter of a million distinct English
words. Besides, spoken languages may have one or more
varieties each with dissimilar words, for instance, the
German language has two varieties, a new-spelling
variance and an old-spelling variance. Likewise, the
Armenian language has three varieties each with a
number of deviating words: Eastern Armenian, Western
Armenian, and Grabar. Therefore, it is obvious that
languages are not uniform, in a sense that they are not
standardized and thereby cannot be supported by a single
dictionary.

The second reason is that regular dictionaries
normally target a specific language in that they cannot
support multiple languages simultaneously. For instance,
the Oxford dictionary only targets the English language.
The Hachette dictionary targets the French language,
while the Al Kamel dictionary targets the Arabic
language. Therefore, it is unquestionably impossible to
create an international dictionary pertaining to all
languages of the world.

The third reason is that conventional dictionaries do
not expansively support proper and personal names,
names of countries, regions, geographical locations,
technical keywords, domain specific terms, and
acronyms. For instance, an ordinary dictionary can falsely
detect “Andrew Jackson”, “Intel”, and “Renault” as
incorrect words. Relatedly, technical terminologies such
as “USB”, “SATA”, and “Texel”, and names of diseases
such as “Leukemia”, “Parkinson”, and “Cholera” canbe
falsely detected as misspellings too. In total, it is nearly
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impracticable to compile a universal lexicon containing
words from all existing domains and fields.

The fourth and last reason is that the content of
standard dictionaries is static in a way that it is not
constantly updated with new emerging words unless
manually edited, and thus, it cannot keep pace with the
immense dynamic breeding of new words and terms.

For all the aforementioned reasons, attaining better
speech recognition results greatly require finding a
universal, all-inclusive, multi-language, and dynamic
dictionary embracing a colossal volume of real-world
entries, words, terms, proper nouns, expressions, jargons,
and terminologies.

5STATE-OF-THE-ART ASR ERROR CORRECTION
TECHNIQUES

Different error correction techniques exist, whose purpose
is to detect and correct misspelled words generated by
ASR systems. Broadly, they can be broken down into
several categories: Manual error correction, error
correction based on alternative hypothesis, error
correction based on pattern learning, and post-editing
error correction.

In manual error correction, a staff of people is hired to
review the output transcript generated by the ASR system
and correct the misspelled words manually by hand. This
is to some extent considered laborious, time consuming,
and error-prone as the human eye may miss some errors.

Another category of error correction is the alternative
hypothesis in which an error is replaced by an alternative
word-correction called hypothesis. The chief drawback of
this method is that the hypothesis is usually derived from
a lexicon of words; and hence, it is susceptible to high
out-of-vocabulary rate. In that context, Setlur, Sukkar,
andJacob[15] proposed an algorithm that treats each
utterance of the spoken word as hypothesis and assigns it
a confidence score during the recognition. The hypothesis
which bypasses a specific threshold is to be selected as the
correct output word. The experiments showed that the
error rate was reduced by a factor of 0.13%. Likewise,
Zhou, Meng, and Lo[16] proposed another algorithm to
detect and correct misspellings in ASR systems. In this
approach, twenty alternative words are generated for
every single word error and treated as utterance
hypotheses. Then, a linear scoring system is used to score
every utterance with certain mutual information
representing the frequency or the number of occurrence
of this specific utterance in the input waveform. Next,
utterances are ranked according to their scores. The
utterance that received the highest score is chosen to
substitute the detected error. Experiments conducted,
indicated a decrease in the error rate by a factor of 0.8%.

Pattern learning error correction is yet another type
of error correction techniques in which error detection is
done through finding patterns that are considered
erroneous. The system is first trained using a set of error
words belonging to a specific domain. Subsequently, the
system builds up detection rules that can pinpoint errors
once they occur. At recognition time, the ASR system can
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detect linguistic errors by validating the output text
against its predefined rules. The drawback of this
approach is that it is domain specific; and thus, the
number of words that can be recognized by the system is
minimal. In  this  perspective, =~ Mangu and
Padmanabhan[17] proposed a transformation-based
learning algorithm for ASR error correction. The
algorithm exploits confusion network to learn error
patterns while the system is offline. At run-time, these
learned rules assist in selecting an alternative correction
to replace the detected error. Similarly, Kaki, Sumita, and
H. Iida[18] proposed an error correction algorithm based
on pattern learning to detect misspellings and on
similarity =~ string matching algorithm to correct
misspellings. In this technique, the output recognized
transcript is searched for potential misspelled words.
Once an error pattern is detected, the similarity string
algorithm is applied to suggest a correction for the error
word. Experiments were executed on a Japanese speech
and the results indicated an overall 8.5% reduction in
ASR errors. In a parallel effort, statistical-based pattern
learning techniques were also developed.Jung, Jeong, and
Lee[19] employed the noisy channel model to detect error
patterns in the output text. Unlike other pattern learning
techniques which exploit word tokens, this approach
applies pattern learning on smaller units, namely
individual characters. The global outcome was a 40%
improvement in the error correction rate. Furthermore,
Sarma and Palmer[20] proposed a method for detecting
errors based on statistical co-occurrence of words in the
output transcript. The idea revolves around contextual
information which states that a word usually appears in a
text with some highly co-occurred words. As a result, if
an error occurs within a specific set of words, the
correction can be statistically deduced from the co-
occurred words that often appear in the same set.

The final type of error correction is post-editing. In this
approach, an extra layer is appended to the ASR system
with the intention of detecting and correcting
misspellings in the final output text after the recognition
of the speech is completed. The advantage of this
technique is that it is loosely coupled with the inner
signal and recognition algorithms of the ASR system; and
thus, it is easy to be implemented and integrated into an
existing ASR system and can also benefit from other error
correction explorations done in sister fields such as OCR,
NLP, and machine translation. As an initial attempt,
Ringger and Allen[21] proposed a post-processor model
for discovering statistical error patterns and correct
errors. The post-processor was trained on data from a
specific domain to spell-check articles belonging to the
same domain. The actual design is composed of a channel
model to detect errors generated during the speech
recognition phase, and a language model to provide
spelling suggestions for those detected errors. As
outcome, around 20% improvement in the error
correction rate was achieved. On the other hand, Ringger
and Allen[22] proposed a post-editing model named
SPEECHPP to correct word errors generated by ASR
systems. The model uses a noisy channel to detect and
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correct errors; it also uses the Viterbi search algorithm to
implement the language model. Moreover, the system
leverages a fertility model to deal with split or merged
errors such as 1-to-2 or 2-to-1 mapping errors. Another
attempt was presented by Brandow and Strzalkowski[23]
in whichthe text generated by the ASR system is collected
and aligned with the correct transcription of the same
text. In a training process, a set of correction rules are
generated from these transcription texts and validated
against a generic corpus.The Rules that are void or
invalid are discarded. The system loops for several
iterations until all rules get verified. Finally, a post-
editing stage is employed which exploits these rules to
detect and correct misspelled words generated by
theASRsystem.

6PROPOSED METHOD

This paper proposes a novelpost-editing ASRcontext-
sensitive error correction method based on Microsoft Web
N-Gram dataset [5] for detecting and correcting non-
word and real-word errors produced by ASRsystems. The
proposed method uses a post-editing approach in that it
spell-checks the output transcript of the ASR system after
the input speech has been converted into text. Microsoft
who owns Bing search engine [6] already developed and
published a set of online public APIs and Web Services to
give access to their indexed web data. The Microsoft Web
N-Gram dataset is a database containingreal-world web-
scale dynamic data stored as word n-gram sequences
with their corresponding counts,worthwhile in solving
manycomputational linguisticsproblems. Since Microsoft
dataset houses a huge volume of data crawled from real-
world web pages and documents postedon the Internet, it
is overflowedwith proper names, technical keywords,
domain specific terms, acronyms, special expressions, and
terminologies,that altogether can mimic a wide-ranging
dictionary thatcan covermost of the words in the

language.
Predominantly, the proposed error correction method
combines three algorithms: The error detection

algorithm,the candidate corrections generationalgorithm,
and thecontext-sensitive error correction algorithm.
Figure 4shows thelogical block diagramfor the proposed
ASR error correction method.
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Fig. 4.Proposed ASR Error Correction Method

6.1 The Error Detection Algorithm

The error detectionalgorithmdetects non-word spelling
errors in the ASR output text. Formally, these errors are
denoted byE={eiezes,e) where edenotes an non-word
error, and p denotes the total number of detected
errors.The ASR output text is denoted byA={a1,az a5 a:)
wheres is a word or term in the ASRoutput text, and tis
the total number of words. The algorithm works as
follows: it first starts by validating every word ai in
Aagainst Microsoft Web N-Gram dataset; if an entry for ai
is found in the dataset, then a: is assumedto bespelled
correctly, and therefore no spelling correction is required.
In contrast, if no entry exists for the word ain the dataset,
then ai is assumed to be misspelled, and thusit requires a
spelling correction. In due course,all the detectedspelling
errors are grouped in a list,denoted byE={e1,ez,e3,e,} where
p is the total number of non-word errors detected in the
ASRoutput text. The pseudo-codefor the error detection
algorithm is given below.

FunctionErrorDetection (A)

{

/1 split the ASR text on space and return word tokens
W&Split(A,“”)

for(i<-0 to i <N) // detect all word tokens

{
/1 search for W[i] in Microsoft N-Gram dataset
R<&Search(MicrosoftDataset , W([i])

if(R == true) // mean W[i] was found in Microsoft
dataset(i.e. correctly spelled)
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i< i+l // go to the next word tokenW[i+1]

else // WIi] is misspelled and thus a correction is required
/1 go to the candidate corrections generation algorithm
GenerateCandidates(WT[i])

}

}

6.2 The
Algorithm

The candidate corrections generationalgorithm generates
a list of possible spelling correctionsfor the errors that
were previously detected by the error detection
algorithm. The list of candidates is denoted by
C={cu,c1z,c13,019,...., Co1,C2,C3,C} Where p denotes a particular
candidate spelling, b denotes the total number of detected
non-word ASR errors, and g denotes the total number of
candidate corrections generated for a particular error.
Computationally, the algorithm generates candidate
corrections using a 2-gram character-based model
thatsearches for unigrams in Microsoft Web N-Gram
dataset having 2-gram character sequences in common
with theerror word.

For example, considering a speech that was converted
by theASR system into “watch episodes of your favorite
shaws and more”, in which the word “shows” was
misrecognized as “shaws”. Converting the word “shaws”
into 2-gram character sequences would produce: “sh” ,
“ha” , “aw” , “ws”. The task of the candidate corrections
generation algorithmis to find a series of unigrams from
Microsoft Web N-Gram datasetthat enclose these 2-gram
sequences. Table 1 shows a possible set of unigrams for
the error word “shaws” retrieved from Microsoft Web N-
Gram dataset.

Candidate Corrections Generation

TABLE 1
UNIGRAMS SHARING 2-GRAM CHARACTERS WITH THE ERROR
“SHAWS”
2-Gram Unigrams from Microsoft Web N-
Sequences Gram Data Set

sh shows shawls shays shank sham

ha shawls shays shank haws hawk

aw saws sawn maws haws hawk

WS shows saws maws haws hews

Now the task is to find the unigrams having the
highest number of common 2-gram character sequences
with the error word “shaws”. As there might be hundreds
of unigrams, the algorithm only selects the top 8
unigrams as candidate corrections. Table 2 outlines the
list of the top 8 candidate corrections for the error word
“shaws”.
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TABLE 2
LisT oF Top 8 CANDIDATE CORRECTIONS
Candidate Number of Common 2-Gram
Corrections Character Sequences
haws 3
saws 2
hawk 2
shows 2
shawls 2
shays 2
shank 2
maws 2
The pseudo-code of the candidate corrections
generation algorithm is given below.
FunctionGenerateCandidates (word)
{
/1 create 2-gram character sequences and put them in a
a<Split2Grams(word)

for(i<-0 to i <N) // for all 2-gram sequences

{
/1 look for unigrams having alil as substring, (i.e.
/lunigrams sharing 2-gram sequence with the error word

L[i] €Substring(MicrosoftDataset, a[i])

i€ i+l
}

/1 select the top 8 unigrams sharing 2-gram character
sequences with the error word
candidates€<-commonUnigrams(L)

/1 go to the error correction algorithm
ErrorCorrection(candidates)

}

6.3 The Error Correction Algorithm
The error correctionalgorithm selects the best candidate
spelling as a correction for every detected error. The
algorithm first starts by considering each generated
candidate correctionci with 4 words that directly precede
the initial error in the ASR output text. The result is a 5
words sentence denoted as L="awmaisaizai1 cir ” where
Ldenotes a sentence made out of 5 words, a denotes a
word preceding the original ASR error, ¢ denotes a
particular candidate correction for a particular error, i
denotes the in word that precedes the original ASR error,
and r denotes the ru candidate correction. Subsequently,
the algorithm searches for every L inMicrosoft Web N-
Gram dataset. The candidate cir in sentence L having the
highest number of occurrence in Microsoft Web N-Gram
dataset is selected to replace the originally detected ASR
error.

The proposed algorithm is context-sensitive as it
depends on real-world data statistics from Microsoft Web
N-Gram dataset, largelydug up from the Internet.
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Accordingly, and back to the previous example, in spiteof
the fact that the candidate “haws” is a valid correction for
the error word “shaws”, candidate “shows” will be
favoredand selected as a spelling correction instead of
“haws” since the sentence “watch episodes of your
favorite haws and more” would occur fewer times over
the Internet than the sentence “watch episodes of your
favorite shows and more”. Table 3 outlinesthe variousL,
5-gram sentences from Microsoft Web N-Gram dataset,
each enclosing a word from the list of candidate
corrections.

TABLE 3
5-GRAM SENTENCES FROM MICROSOFT WEB N-GRAM
DATASET

L: 5-Gram Sentences
episodes of your favorite haws
episodes of your favorite saws
episodes of your favorite hawk
episodes of your favorite shows

episodes of your favorite shawls
episodes of your favorite shays
episodes of your favorite shank
episodes of your favorite maws

I[N ([WIN|—-

The pseudo-code of the error correction algorithm is
given below.

FunctionErrorCorrection (candidates)

{

for(i<-0 to i <N) // process all candidate corrections

{

/I concatenate together the ith candidate with the four

preceding words

/I A is a global array containing the original ASR output text
L € Concatenate(A[j-4], A[j-3], A[j-2], A[j-1],
candidates]i] )

/I find L in Microsoft N-gram dataset and returns its frequency
frequencyl[i] € Search(MicrosoftDataset , L)

i€ i+l
}

p<MaxFrequency(frequency)
/1 return the index p of the candidate whose L has the
highest frequency

/I return the correction for the ASR error
RETURN candidates|p]
}

TEXPERIMENTS & RESULTS

For evaluation purposes, five different English articles
each composed of around 100 words were read by five
different speakers. Those articlesare from various
domains including information technology, engineering,
medicine, business, and sports. In sum, they consist of
around500 words comprisingregular dictionary words,
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proper names, domain specific terms, special
terminologies, and technical jargons. The ASR software
used to perform the speech recognition is based on
Microsoft Speech Application Programming Interface
(SAPI 5.0) engine [24]. SAPI 5.0 is a freely-redistributable
API developed by Microsoft and released in 2000 to allow
the use of speech recognition and speech synthesis within
Windows applications. Such applications include
Microsoft Office, Microsoft Narrator, and Microsoft
Speech Server.

The outcome of performing speech recognition using
SAPIwasaround 106 total errors out of 500total words for
the five articles, making the average of ASR errors around
21 errors per 100-words article. As a result, the error rate
is 21% distributed as 14%non-word errors and 86% real-
word errors.Table 4delineates the results obtained for
SAPI including the total number of non-word and real-
word errors.

TABLE 4
RESULTS FOR THE MICROSOFT SAPI

Total Total Total Average Total Total
Articles | Words | Errors Total Non- Real-
Errors Word Word
Errors Errors
5 500 106 106/5=21.2 15 91
21% 21% 14% of 86%
106 of 106

Post-editing the obtained results using the proposed
method resulted in 94 total errors being corrected
successfully, among which 12 were non-word errors and
82 were real-word errors. As a result, around 89% of the
total errors were corrected; around 80% of total non-word
errors were corrected; and around 90% of total real-word
errors were corrected successfully. Table 5 outlines the
obtained test results for the proposed method.

TABLE 5
RESULTS FOR THE PROPOSED METHOD
Total Errors Non-Word Errors Real-Word Errors
106 15 91
21% of 500 total 14% of 106 86% of 106
words

Corr- Not Corr- Not Corr- Not
ected Corrected | ected | Corrected ected Corrected

94 12 12 3 82 9
89% of 11% of 80% 20% of 15 | 90% of 10% of 91

106 106 of 15 91

In retrospect, the proposed method clearlyoutmatched
the Microsoft SAPI engine as its error rate was around
21% for 500-words articles (106 errors out of 500 total
words); while the error rate for the proposed method was
around2.4% (12 errors out of 106 were left uncorrected,
making the error rate 500*2.4%=12 errors out of 500 total
words). These exceptional results are chiefly due to the
bigamount of 5-gram data in Microsoft Web N-Gram
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dataset which were used by the proposed method as a
dictionary to perform spelling detection and correction.
As the content ofMicrosoft Web N-Gram dataset is
minedfrom the World Wide Web, it is
comprehensivelypacked with real-world data
encompassing regular dictionary words, in addition to
proper names, domain specific terms, special
terminologies, uncommonacronyms, and technical
jargons and expressions that can cover millions of words
along with their possible sequences in the language.

8CONCLUSIONS AND FUTURE WORK

This paper presented an original context-sensitive error
correction method for detecting and correcting speech
recognition non-word and real-word errors. The
proposed system is based on Microsoft Web N-Gram
dataset which incorporateslarge amount of real-world
word sequences and n-gram statistics initially extracted
from the World Wide Web, and necessary to effectively
correct misspellings in any sort of text. Experiments
conducted on several spoken articles showed a notable
decrease in the ASR error rate. Practically, the error rate
using the proposed method was around 2.4%, generating
only 12 errors out of 500 total words; whereas, the error
rate for other existing methods such as the SAPI engine
was around 21%, generating 106 errors out of 500 total
words.IntegratingMicrosoft Web N-Gram dataset into the
proposed algorithms increased drastically the rate of
error correction as this datasetholdsan extensivenumber
of words and accurate statistics about word associations
that almost cover the entire vocabulary of the language
including regular words,proper names, domain specific
terms, technical terminologies, scientific acronyms,
special expressions, and a lot of word sequences that
haveoriginallyoccurred on the web.

As for future work, the proposed methodis to be
parallelized in an attempt to boostitsexecution time.
Often,  parallel  algorithms,  more  specifically
multithreaded algorithms can take the most out of
multiprocessor large-scale computing machines to deliver
very fast real-time computations, necessary to perform
extensive error correction for long textat high speed and
quality.
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