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ABSTRACT 

Currently, organizations are transforming their business processes into e-services and service-oriented 

architectures to improve coordination across sales, marketing, and partner channels, to build flexible and 

scalable systems, and to reduce integration-related maintenance and development costs. However, this 

new paradigm is still fragile and lacks many features crucial for building sustainable and progressive 

computing infrastructures able to rapidly respond and adapt to the always-changing market and 

environmental business. This paper proposes a novel framework for building sustainable Ecosystem-

Oriented Architectures (EOA) using e-service models. The backbone of this framework is an ecosystem 

layer comprising several computing units whose aim is to deliver universal interoperability, transparent 

communication, automated management, self-integration, self-adaptation, and security to all the 

interconnected services, components, and devices in the ecosystem. Overall, the proposed model seeks to 

deliver a comprehensive and a generic sustainable business IT model for developing agile e-enterprises 

that are constantly up to new business constraints, trends, and requirements. Future research can 

improve upon the proposed model so much so that it supports computational intelligence to help in 

decision making and problem solving. 
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1. INTRODUCTION 

At present, enterprises are increasingly focusing on transforming their traditional core 

businesses into e-services to create an agile distributed e-business [1]. Typically, electronic 

business allows a seamless interaction between a company and its clients, as well as its partners 

and associates. On the long run, this improves its productivity, increases its profitability, and 

reinforces its market power. A way for building e-service models is SOA short for Service-

Oriented Architecture. Fundamentally, SOA is a model for system development based on 

loosely-integrated suite of services that can be used within multiple business domains [2, 3]. In 

practice, SOA has many benefits: it promotes the reusability of existing technological assets; it 

accelerates the expandability and evolution of information systems; it eases systems integration; 

and it simplifies the building of next-generation composite applications [4, 5, 6]. Thus, it 

reduces application development and maintenance costs, improves coordination across the 

different business stakeholders and processes, and increases business agility to respond quickly 

to on-demand requirements. Although SOA had great success [7], it has many limitations and 

drawbacks [8, 9], and lacks many features such as universal interoperability i.e. the ability to 

mesh incompatible and wide-ranging technologies; manageability i.e. the ability to be 

autonomously operated; adaptability i.e. the ability to self-adapt according to the state of its 

resources and execution environment; integrability i.e. the ability to autonomously discover and 

self-integrate new service components; survivability i.e. the ability to survive a disaster;  
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availability i.e. the ability to stay up without any downtime; and security i.e. the ability to 

defend and protect against malware threats [10]. Altogether, these aforesaid characteristics, if 

provided, would deliver a development model for building sustainable service-based 

information systems. This paper presents a generic framework for building the successor of 

SOA, namely EOA short for Ecosystem-Oriented Architecture. EOA defines a digital 

ecosystem with properties of sustainability, universal interoperability, manageability, self-

integration, self-adaptation, and security [10], inspired by natural ecosystems for building 

business models and architectures for sophisticated, distributed, and collaborative e-enterprises, 

e-marketplaces, e-communities, and e-cities using reusable service components [11]. The 

backbone of this framework is an ecosystem layer comprising several computing units: 

Ecosystem Management Bus (EMB), Ecosystem Communication Unit (ECU), Ecosystem 

Integration Unit (EIU), Ecosystem Management Language (EML), Ecosystem WMI Scripting 

Unit (EWSU), and Ecosystem Security Unit (ESU). Their aim is to provide standardization, 

transparent communication, automated management, self-integration, self-adaptation, and 
security for all the interconnected hardware and software in the digital ecosystem. 

2. SOA LIMITATIONS 

Traditional service-oriented and component-based architectures such as SOA provide 

computational resources as loosely and distributed components called services. However, these 

models do not exhibit sustainability features including universal interoperability, manageability, 

self-integration, self-adaptation, and security [12]. As a result, new challenges have come to 

light and can be summarized as follows:  

Universal Interoperability: SOA does not allow a standardized and an effective interaction and 

data exchange between a wide range of products, manufactured by different vendors and service 

providers, and built using different technologies and platforms. 

Manageability: SOA does not define protocols and high-level languages to manage and control 

its components in a consistent, efficient, and automated manner. A manageable system is a 

system that has the ability to be corrected, updated, expanded, and partially replaced without 
impacting other components in the system. 

Self-Integration: SOA does not provide a mechanism for the automatic discovery and 

integration of components and services into the existing infrastructure. For instance, an SOA 

cannot be scaled nor have its modules replaced without requiring programs to be modified and 

recompiled. 

Self-Adaptability: SOA does not provide a mechanism to self-optimize itself and adapt its 

internal state according to the state of its execution environment. This includes increasing 

automatically disk storage to cope with data growth, applying load balancing techniques to 

contain the increase of users, assigning extra processing cycles to computationally intense 

applications, and requesting more Internet bandwidth for rich-Internet applications. 

Security: The decentralized nature of SOA is by itself a threat. Since all services are not located 

locally as in personal computers, they are subject to security breaches and vulnerabilities. 

Moreover, SOA’s environment is not encrypted and therefore encrypting messages, deploying 

firewalls, and forcing role-based policies are crucial to ensure the self-protection of the system. 

Sustainability: SOA does not feature all the above-mentioned attributes. As a result, it is 

inadequate to build information systems that are cross-platform, automatically manageable, 
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adaptably optimizable under severe circumstances, easily scalable, secure, reliable, and can stay 

active for a long period of time, while withstanding system failures, stoppages, and bugs. 

3. RELATED WORK 

Over years, several studies have been done to enhance SOA architectures and provide 
significant improvements for their functionalities, features, and implementations. In this section, 

several of these attempts are to be discussed elaborately. 

3.1. CAWE Framework 

The composition model proposed in SOA does not explicitly deal with personalization and 

context-awareness. In order to address such limitations, the CAWE (Context Aware Workflow 

Execution) conceptual framework was conceived [13]. CAWE is used to develop context-aware 

composite web applications for SOA architectures with such properties as the support of 

execution of context-sensitive workflows, the capability to easily manage user interactions, and 

the ability to personalize information based on different users and devices. All in all, CAWE 

adds self-adaptation properties to service-oriented architectures allowing them to meet the 

requirements of heterogeneous users in an always-changing environment. 

3.2. Self-Integration 

A major challenge in SOA is the integration of services into the existing infrastructure which is 

so far a non-automated process. For this reason, a model for self-integrating services in SOA 

architectures was proposed [14]. It is based on WSDL documents which allow the automation of 

web service discovery, integration, deployment, and monitoring processes. Below are the 

system’s original steps: 

Service discovery: The WSDL documents which represent service queries are matched against 

the service offers. A matching score is then calculated and used to rank the different services. 

Service integration: The discovery algorithm produces a collection of mediator plug-ins for 

successful matches. These mediators are used at runtime to enable ad-hoc service integration. 

Deployment process: Mediators are deployed in the system and their endpoints are invoked by 

the participating web services. 

Monitoring: All unreachable services are removed and the system will start a new round to 

discover new services. 

3.3. Survivability 

Survivability is the ability of a system to continue to operate in spite of errors, failures, or 

accidents [15]. In fact, SOA does not define a method for error recovery, nor a clear scheme for 

building survivable components. In view of that, an error recovery model was proposed [16]. It 

contains four different states: good state, vulnerable state, fault state, and recovery state. 

Initially, the system is in the good state implying that it is operating correctly. It moves to the 

vulnerable state whenever a user violates a security policy, for instance, accessing a resource 

without authorization. It then enters the fault state when vulnerability is successfully exploited. 

As a result, the system automatically transits to the last state, namely the recovery state, wherein 

the system is totally recovered. Figure 1 depicts the state transition diagram for this proposed 

error recovery model. 
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Figure 1.  Error recovery state transition diagram 

3.4 Sustainability 

The OASIS reference model [17] is a generic framework for building and managing service-

oriented architectures. It is majorly composed of six units: the orchestration and management 

unit which is responsible for administering the connected components and web services in the 

SOA; the data content unit which represents a set of databases that feed web services with data 

and information; the service description unit which defines the functions exposed by the 

connected web services in the SOA; the service discovery unit which contains a look-up registry 

to locate and consume web services; the messaging unit which can be thought as the 

communication medium that lets all connected components share data and communicate 

between each other; and the security and access unit which provides a security layer for securing 
and encrypting the messages being sent and received between the different components of the 

SOA. Figure 2 depicts the OASIS reference model. 

 
Figure 2. OASIS model 

4. ECOSYSTEM-ORIENTED ARCHITECTURE 

Unlike the service-oriented architecture which only contains three basic layers, mainly the 

presentation, the service, and the data layer, the proposed ecosystem-oriented architecture 
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(EOA) adds an additional layer called the ecosystem layer whose role is to deliver a sustainable 

operational environment for the underlying IT infrastructure. This includes such features as 

data-path and messaging middleware, universal interoperability, transparent communication, 

automated management, self-integration, self-adaptation, and security for all services in the 

ecosystem. Figure 3 depicts the four layers of the proposed EOA. 

 

Figure 3.  The four layers of the proposed EOA 

4.1. The Presentation Layer 

The presentation layer is the top-most level of functionalities that mainly provides such system’s 
input and output interfaces as sending requests to and receiving responses from services, 

browsing catalog, buying merchandise, invoking remote content, and reporting. 

4.2. The Service Layer 

The service layer defines the execution of the application, processes clients’ requests, makes 
logical decisions and evaluations, and performs intensive calculations. Usually, web services, 

programming modules, dynamic libraries, and APIs are deployed in this layer. 

4.3. The Data Layer 

The data layer is where data are stored and retrieved. Typically, data are saved into databases, 

system files, or even XML files. The service layer requests data for processing from the data 

layer and then passes the results back to the presentation layer. 

4.4. The Proposed Ecosystem Layer 

In effect, the proposed ecosystem layer is a middleware sitting between the presentation and the 

service layer and providing several functionalities and features. It is made out of six building 
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blocks or operational units. Figure 4 depicts these six units along with their tasks and 

characteristics. 

 

Figure 4.  The six units of the Ecosystem layer 

The Ecosystem Management Bus (EMB) delivers the data-path of the entire ecosystem and a 
messaging middleware for sending and receiving messages between the different interconnected 

services.  

The Ecosystem Communication Unit (ECU) delivers standardization and a transparent 

communication protocol defined by a proprietary XML-based language that allows the 

collaboration and the interoperability of different services built using different architectures, 

programming languages, and technologies.  

The Ecosystem Management Language (EML) delivers automated management for services 
using a proprietary high-level language based on proprietary syntax rules and vocabulary. The 

prime role of EMB is to manage, control, monitor, and administer the distributed services inside 

the ecosystem. 
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The Ecosystem Integration Unit (EIU) delivers self-integration by automating service discovery, 

integration, and deployment. 

The Ecosystem WMI Scripting Unit (EWSU) delivers self-adaptation by allowing the running 

ecosystem to optimize itself and change its state according to the changes in the execution 

environment. 

The Ecosystem Security Unit (ESU) delivers security technologies to protect information 

traveling through the ecosystem such as message encryption, spam filtering, and firewall.  

4.4.1. EMB - Ecosystem Management Bus 

The Ecosystem Management Bus (EMB) provides a data-path for data to travel between the 

functional units and services of the ecosystem. It constitutes a data transmission medium, 

emulating a messaging middleware that bridges between the different interconnected and 

distributed services to allow them send and receive data back and forth to each other. 

Characteristically, it automates the in and out communications between all involved parties and 

coordinates the interaction between them, and allows the storage, routing, and transformation of 

messages during inter-system interactions. Furthermore, the EMB houses the different 

functional units of the ecosystem and thus it works as a central orchestrator that manages the 

operations going inside the ecosystem. Figure 5 shows the actual diagram of the EMB. 

 

Figure 5.  EMB 

4.4.2. ECU - Ecosystem Communication Unit 

The Ecosystem Communication Unit (ECU) is a multi-agent and a multi-platform design for 

connecting services, possibly incompatible, together to interact, send requests, and receive 

responses from each other. As a multi-agent model, it permits the distribution of services over 

different machines, networks, and premises, allowing a seamless and transparent 
communication between them. As a multi-platform model, it permits the support of 

incompatible services built using different platforms, different standards, different technologies, 

and different programming languages. Additionally, the ECU provides a communication 

language called ECL short for Ecosystem Communication Language based on XML language 

for exchanging structured information between the different services of the ecosystem. ECL is 

based on XML syntax to format messages sent to and received from inner-system services. In 

practice, a client requesting an operation sends an ECL message with the appropriate parameters 

to a destination service. The service returns then an XML-formatted response with the resulting 

data. Being based on standard message format, ECL promotes interoperability and 

standardization for all services regardless of their implementation, target-platform, and 

underlying technology. Following is a sample request in ECL language. It consists of a sender 



 

 

 

 

 

 

International Journal in Foundations of Computer Science & Technology,Vol. 2, No.1, January 2012 

8 

 

 

 

application whose IP is 192.168.1.20 and ID is 24 invoking a function called “Max” with two 

integer parameters 10 and 50 respectively, over a service whose IP is 192.168.1.177 and ID is 

91 

 

<protocol> 

    <sourceIP>192.168.1.20</sourceIP> 

    <destinationIP>192.168.1.177</destinationIP> 

    <sourceID>24</sourceID> 

    <destinationID>91</destinationID> 

    <functionInvoked>Max</functionInvoked> 

    <functionParams> 

          <param>10</param> 

          <type>int</type> 

          <param>50</param> 

          <type>int</type> 

    </functionParams> 

    <functionReturnType>int</functionReturnType> 

    <stamp>5/4/2011 09:32:10PM</stamp> 

    <version>1.0</version> 

</protocol> 

4.4.3. EML - Ecosystem Management Language 

The Ecosystem Management Language (EML) is a declarative language based on a proprietary 

syntax used to administer every single component connected to the ecosystem infrastructure. At 
heart, its purpose is to ease and automate the management and control of the ecosystem using 

control commands issued by administrators via a console manager. For instance, one of EML’s 

commands is the “bind” command which is used to connect a new web service into the system, 

while “unbind” is used to disconnect it. The “is-run” command is used to check whether or not 

an existing service is in online or offline mode. Another command can grant and revoke security 

permissions from a specific service; whereas, the command “replica” creates a replication for an 

existing service. 

The core of the EML is an EML interpreter which scans an issued EML command, extracts 

valuable tokens out if it, parses them to validate their correct arrangement, and then executes the 

command. Generally speaking, EML helps better automate the management and administration 

of the different operating services in the ecosystem. 

4.4.4. EIU - Ecosystem Integration Unit 

The Ecosystem Integration Unit (EIU) facilitates the discovery, self-integration, and dis-

integration of services in and out of the existing ecosystem. The process starts when a new 

service needs to integrate into the present infrastructure. The EIU intervenes to validate the 

Service Description Language (SDL) of the service that is requesting integration. If validation is 

successful, an acknowledgement is sent to the corresponding service and a new record is created 

in the Ecosystem Service Registry (ESR) containing important details such as service ID, 

service protocol, service IP, service functions, parameters, and return data type. Figure 6 depicts 

the EIU and the various steps required to self-integrate a new service into the ecosystem. 
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Figure 6.  EIU 

The algorithm can be summarized as follows: 

ALGORITHM 

// send a request for integration  

// broadcast SDL 

if(validation(params)==true) 

{ 

   InsertRecord(randomID, protocol, serviceIP, SDL) // insert details into ESR  

   // this ESR record contains a unique random ID that uniquely identifies a service in the system,  

   // the service protocol either SOAP, REST, or any other technology,  

   // the service IP which indicates the Internet address of the machine hosting this new service,  

   // SDL contains the list of functions that the new service encapsulates along with their parameters and data types. 

 

   // send positive acknowledgment message 

} 

else  

// reject request 

 

 

 



 

 

 

 

 

 

International Journal in Foundations of Computer Science & Technology,Vol. 2, No.1, January 2012 

10 

 

 

 

4.4.5. EWSU - Ecosystem WMI Scripting Unit 

The role of the Ecosystem WMI Scripting Unit (EWSU) is to provide self-adaptation for the 

ecosystem allowing it to change its state based on the state of its execution environment such as 

increasing memory allocation, increasing disk quota, assigning more CPU cores and cycles, and 

reducing power consumption. For this reason, EWSU utilizes the Windows Management 

Instrumentation (WMI) API [18] which uses scripts to automate administrative tasks on remote 

computers as well as the management of the operating system peripherals, resources, and 

products. Fundamentally, WMI is a set of extensions to the Windows Driver Model to monitor 

product's performance, diagnose errors, write trace information, manage operating system’s 

resources, and provide system information and notification. In order to deliver instrumentation 

for ecosystem-oriented architectures, WMI is incorporated inside the ecosystem layer. Upon the 

execution of a specific script, the EWSU engine interprets it and hands it to the WMI COM API 

which passes it, in turn, down to the Windows WMI Framework. This framework will then 

execute it over the corresponding driver which will accordingly change the behavior and the 
settings of the actual hardware. Below is the general syntax for executing a WMI script using 

EWSU. 

executeWMI: Service-ID, WMI-script 

executeWMI-ack: Service-ID, True|False 

4.4.6. ESU - Ecosystem Security Unit 

The Ecosystem Security Unit (ESU) provides all sort of protection against malwares and 

attacks, and ensures the correct implementation of security polices and access controls inside the 

ecosystem. Essentially, the ESU provides several security technologies that are listed below: 

Spam Filtering [19]: It isolates unsolicited requests to the services of the ecosystem. Besides, it 

monitors and inspects every single message that circulates throughout the ecosystem based on 

its content, size, origin, and type. 

Threat Scanning: It captures and quarantines viruses, spywares, trojans, and backdoors [20] so 

as to ensure maximum protection while the ecosystem is running. It also detects and prevents 
several security attacks and threats such as DoS (Denial of Service), IP spoofing, session 

hijacking, DNS poisoning, and password cracking.  

Firewalls [21]: They block unwanted ports and Internet addresses from network transmission. 

Further, they inspect each packet passing through the network and accept or reject it based on 

source and destination port, source and destination IP, service ID, and other user-defined rules. 

Encryption [22]: It ciphers all messages that travel in and out of the ecosystem. The ESU 

provides several encryption algorithms to guarantee data concealment all the time. For instance, 

AES (Advanced Encryption Standard) is used to encrypt the communication between all the 

components of the ecosystem; while, SSL is used to securely encrypt HTTP web requests sent 

between the different services. 

Access Control: It grants and revokes permissions based on users and service identities. The 

ESU employs an Access Control Matrix [23] that represents the rights of each subject with 

respect to every object in the system. Subjects are the entities that can perform actions, while 

objects are the resources on which access needs to be controlled. 

Reporting and Logging: They log all communication and activities during the routine operation 

of the ecosystem. They have also the ability to capture detailed history for the invoked services 
including their IDs, IPs, timestamps, functions requested, protocols used, bytes served, and user-
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agents. In addition, the ESU can report errors, runtime exceptions, and any kind of faults that 

have occurred during the normal operation of the ecosystem. Figure 7 displays the six major 

security technologies provided by the ESU. 

 

Figure 7 – ESU 

5. CONCLUSIONS 

This paper presented a conceptual model for building sustainable ecosystem-oriented 

architectures with such features as universal interoperability, manageability, self-integration, 

self-adaptation, and security. The proposed model is a collection of several units, each having a 

particular purpose and function. The EMB (Ecosystem Management Bus) is the central data-

path responsible for delivering messages between different services. The ECU (Ecosystem 
Communication Unit) features a communication language called ECL to format requests and 

responses of collaborating services. The EML (Ecosystem Management Language) is a 

proprietary language made out of high-level commands to automate the administration of the 

inner services of the ecosystem. The EIU (Ecosystem Integration Unit) is responsible for 

binding and unbinding services in a consistent and automated manner. The EWSU (Ecosystem 

WMI Scripting Unit) is responsible for self-adapting the ecosystem and allocating and de-
allocating resources based on the requirements and needs. The ESU (Ecosystem Security Unit) 

provides a secure operating environment for working services and an ultra-tight protection for 

the entire ecosystem against malicious network attacks. This complete framework allows the 

building of sustainable and avant-garde large-scale computing service-based models that 

leverage existing technological assets, reduce application development costs, and promote the 

development of agile e-enterprises that can cope with the ever-changing e-demands, trends, and 
business requirements. 

6. FUTURE WORK 

The proposed sustainable ecosystem-oriented architecture can be improved in several ways, one 

of which is adding computational intelligence to the ecosystem layer such as knowledge storage 

to give the system the ability not only to process raw data but also to infer, reason, and help in 

decision making and problem solving. Above and beyond, the EML and the ECL languages 

could be extended to provide richer functionalities allowing more control over the different 

interconnected services of the ecosystem. 
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