
Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

94

Neural Network Model for Path-Planning of Robotic Rover Systems

Youssef Bassil
LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

ABSTRACT

Today, robotics is an auspicious and fast-growing branch of technology that involves the manufacturing, design, and
maintenance of robot machines that can operate in an autonomous fashion and can be used in a wide variety of applications
including space exploration, weaponry, household, and transportation. More particularly, in space applications, a common
type of robots has been of widespread use in the recent years. It is called planetary rover which is a robot vehicle that
moves across the surface of a planet and conducts detailed geological studies pertaining to the properties of the landing
cosmic environment. However, rovers are always impeded by obstacles along the traveling path which can destabilize the
rover’s body and prevent it from reaching its goal destination. This paper proposes an ANN model that allows rover
systems to carry out autonomous path-planning to successfully navigate through challenging planetary terrains and follow
their goal location while avoiding dangerous obstacles. The proposed ANN is a multilayer network made out of three
layers: an input, a hidden, and an output layer. The network is trained in offline mode using back-propagation supervised
learning algorithm. A software-simulated rover was experimented and it revealed that it was able to follow the safest
trajectory despite existing obstacles. As future work, the proposed ANN is to be parallelized so as to speed-up the
execution time of the training process.

Keywords: Neural Network, Robotics, Space Rover, Back-propagation Algorithm

1. INTRODUCTION

Robotics technology is emerging at a rapid pace,
offering new possibilities for automating tasks in many
challenging applications, especially in space explorations,
military operations, underwater missions, domestic
services, and medical procedures. Particularly, in space
exploration, robotic devices are formally known as
planetary rovers or simply rovers and they are aimed at
conducting physical analysis of planetary terrains and
astronomical bodies, and collecting data about air pressure,
climate, temperature, wind, and other atmospheric
phenomena surrounding the landing sites [1]. Basically,
rovers can be autonomous capable of operating with little
or no assistance from ground control or they can be
remotely controlled from earth ground stations called RCC
short for Remote Collaboration Center [2].

In essence, the movement of autonomous rovers
is not directed by human operators; instead, it is controlled
by complex algorithms that allow the rover to traverse
paths on multiple terrains while avoiding obstacles and
path errors. This capability is more formally known as
path-planning in which a rover or any robotic vehicle can
perform terrain analysis and select the safest route to travel
across [3]. The rover can then proceed towards the goal
location over the selected trajectory while avoiding
obstacles without previous knowledge of their existence.

This paper proposes a path-planning solution for
autonomous robotic planetary rover systems based on
artificial neural network (ANN) [4]. The proposed neural
network is multi-layer consisting of three consecutive

layers: an input, a hidden, and an output layer. The input
layer is made out of two neurons that are fed by the
rover’s sensors which are designed to detect obstacles of
any size and shape. The hidden layer is made out of three
neurons and its purpose is to read input data and multiply
them by a certain weight and then forward the results to
the next layer. The output layer is made out of two
neurons that are directly linked to the rover’s motors
which control its movement and its mechanical operation.
The proposed ANN uses a mix of activation functions
including Sigmoid for the hidden neurons and linear for
the output neurons. Moreover, the model employs a
supervised learning approach using the back-propagation
algorithm [5] to train the network in offline mode.

The proposed artificial neural network is meant to
allow the rover system selects the best path through any
given ground by predicting the existing obstacles along the
path and the harsh structure of the landing terrain. This
would allow the rover to navigate autonomously and
safely toward its goal location and complete its designed
task.

2. SPACE EXPLORATION ROVERS

Fundamentally, a rover is a space exploration
robotic vehicle used particularly in exploring the land of a
planet. It has the capability to travel across the surface of a
landscape and other cosmic bodies. A rover has many
features: It can generate power from solar panels; capture
high-resolution images; move in 360 degrees with the help
of a navigation camera (Navcam); walk across obstacles

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/

Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

95

such as bumps and rocks; conduct deep analysis and
record measurements using multiple types of
spectrometers; find properties of materials to identify their
types and their composition; search for geological clues
such as water to detect any presence of life on the landing
environment; and inspect the mineralogy and texture of
the local terrain using panoramic cameras (Pancam) [6][7].

Financially, robotic rovers can cost to build, test,
and deploy hundreds of millions of dollars sometimes
billions of dollars [8]. Historically, Lunokhod and
Marsokhod were two space rovers designed and launched
by the soviets in the 70s [9]; while, Spirit and Opportunity
were two US rovers produced by NASA, the space agency
of the United States, between year 2004 and 2010 as part
of NASA's ongoing Mars Exploration Rover Mission
(MER).

Inherently, there exist two types of rover
vehicles: The first type is the human-controlled rovers
which are remotely manipulated from earth and usually
guided to perform a particular operation. Communication
between the rover and the earth control occurs through the
Deep Space Network (DSN), which is an international
network of large antennas with communication facilities
that supports interplanetary spacecraft missions. Currently,
DSN comprises three deep-space communications
facilities located in Mojave Desert in California, west of
Madrid in Spain, and south of Canberra in Australia.

The second type is the autonomous rovers which
can complete their desired tasks without constant human
direction. Space exploration rovers are distinguished by a
high degree of autonomy as they can cope with their
changing environment, automatically gain information
about the landing sites, survive a disaster or a failure,
operate for prolonged periods of time, execute predefined
operations, and navigate across unstructured terrains
without human assistance.

In practice, autonomous rovers are most of the
time based on artificial evolution to reinforce learning
within their environments. This method of learning is
known as machine learning in which a system can learn
from experience data to generalize so that it performs
correctly in new and unseen situations. Predominantly,
artificial neural network (ANN), one of the most
successfully applied machine learning approaches in
robotics field, is used to control autonomous rover systems
and provide them an intelligent navigation behavior [10].
In effect, ANN allows the rover to plan and execute
collision-free motions within its environment and to reach
its goal location while avoiding obstacles and dangerous
cosmic objects.

3. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks or ANNs for short are
very influential brain-inspired computational models,
which have been employed in various areas such as

computing, medicine, engineering, economics, and many
others. ANNs are composed of a certain number of simple
computational elements called neurons, organized into a
structured graph topology made out of several consecutive
layers and immensely interconnected through a series of
links called the synaptic weights. Synaptic weights are
often associated with variable numerical values that can be
adapted so as to allow the ANN to change its behavior
based on the problem being tackled [11].

Training an artificial neural network is usually
done by feeding the network’s input with a pattern to learn.
The network then transmits the pattern through its weights
and neurons until it generates a final output value.
Afterwards, a training or a learning algorithm compares
the produced output value to an expected output and if the
error range is high, the algorithm marginally alters the
network’s weights so that if the same pattern is fed again
to the network, the output error would be smaller than the
previous iteration. This process gets repeated for many
cycles called epochs using different set of input patterns
until the network produces acceptable outputs for all
inputs [12]. This learning progression allows the network
to identify many patterns and further generalize to new
and unseen patterns. Such type of training is called
supervised learning which uses classified pattern
information to train the network in offline mode. On the
other hand, there exists what so called the unsupervised
learning which uses only minimum information without
pre-classification to train the network while being in
online mode [13]. Some of the most successful supervised
learning approaches are feed-forward and back-
propagation; while, the most successful unsupervised
learning approaches are the Hebbian and the competitive
learning rule.

4. ADVANTAGES OF ANN IN SPACE

APPLICATIONS

Artificial neural networks have many advantages
in space applications due to the following reasons [14]:
Generality: Usually, a space rover system is required to
process a very high number of parameters that are variable,
complex, and received from multiple sources. Neural
networks can handle such large-scale problems as it is able
to classify objects well even when the distribution of
objects in the N-dimensional parameter space is very
complex.
Performance: Due to the nature of neural networks in
executing in a parallel fashion, they can solve problems
with multiple constraints and large number of data
elements at high-speed and simultaneously. Using parallel
technology, rover systems can increase their
responsiveness and quickness in detecting, identifying,
and handling new patterns behaviors.
Adaptability: Due to the dynamic and always-evolving
conditions and challenges in space exploration missions,

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/

Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

96

space rovers are always faced with new trends and patterns.
Neural networks can cope with such circumstances as they
are adaptable to unseen situations and have the capability
to learn data, identify new patterns, and detect trends. A
process that is too complex to be achieved by traditional
computational techniques
Low energy consumption: Commonly, rovers are
powered by solar panels which generate energy from light
and photons particles, and then store it into internal
batteries with limited lifetime and capacity. A supervised-
trained neural network often learns and adjusts its synaptic
weights in offline mode; thus, relieving the rover from
carrying out insensitive mathematical computations at
runtime and consequently reducing processing power,
energy, and power consumption.
Robustness & Fault Tolerance: Since in a space
applications a cosmic ray can be very destructive, it has
however a little impact on neural networks as it can only
destroy a few of the neurons, but not the thousands and the
millions of neurons which would be able to compensate
for the damage, and therefore the output of the network
would not be significantly affected.

5. RELATED WORK

There are a large variety of solutions already

developed for robotic rover systems that are based on
artificial neural networks. Several of them are examined in
this section:

[15] proposed a neural network model for robust
control of space robots. The proposed ANN uses a radial-
basis-function (RBF) to handle the various system
uncertainties. Besides, the Lyapunov unsupervised
learning algorithm is used to train the network and adapt
its parameters in online mode. [16] proposed an adaptive
approach for controlling robot manipulators using neural
networks. The controller is based on the Gaussian radial-
basis-function (GRF) which is meant to provide uniformly
stable adaptation and asymptotically tracking for the
robotic vehicle. The system features a robust controller to
overcome the neural network modeling errors and the
bounded instabilities. [17] proposed a robust model for
space robots based on fuzzy neural network (FNN)
controller. The tracking controller can attain very accurate
goals in the presence of uncertainties without using linear
parameterization and fixed-base robot manipulators. [18]
proposed a model for solving the wheel slip problem in
space rover exploration devices. The model employs a
high fidelity traversability analysis (HFTA) algorithm with
path and energy cost functions to predict and detect
possible slips while the rover is moving. As a result, the
rover can choose the best route via any given topography
by avoiding high slip paths. [19] proposed an intelligent
model for moving robots with translational and rotational
motion deployed in partially structured environment. The
model is based on using two neural networks: The first

network is utilized to identify the open space using
ultrasound range finder data; while, the second network is
utilized to identify a safe route for the robot to move
across while avoiding the nearby obstacles. [20] presented
an advanced robotic architecture for the Rover Mars robot.
The system uses advanced infrared sensors coupled with
an artificial neural network which is trained using a
supervised learning technique. The property of this model
is that it uses evolutionary robotics techniques in which an
evolvable threshold is used for the rover’s sensors. Its
purpose is to alter the activation range of infrared sensors
in order to differentiate between rocks and holes from the
noise originating from landing terrain. The results were a
successful rover able of doing several autonomous
operations. [21] proposed a neural network approach for
robotic systems based on the Jordan architecture. In this
approach, the robot can learn at runtime the different
patterns of the environment using an internal recurrent
artificial neural network. The robot can predict through a
series of input sensors the different objects before it. It can
then generate navigation steps based on the output signal
of the network that would drive the rover’s motors devices.

6. THE PROPOSED NEURAL NETWORK

MODEL

This paper proposes an artificial neural network
(ANN) model for robotic planetary rover systems to
accomplish path-planning on harsh and bumpy terrains. Its
aim is to let the rover vehicle navigates through and
follows its intended goal location while avoiding collisions
with obstacles, rocks, holes, and sharp slopes of arbitrary
shape and size. The movement of the rover is fully
autonomous as it is totally controlled by the neural
network without any human assistance except when
training the network in offline mode.

The proposed ANN is a three layers “2-3-2”
network composed of an input, a hidden, and an output
layer. The input layer is made out of 2 input source nodes
x and y with two corresponding neurons which are
physically fed by the rover’s sensors. The hidden layer is
made out of 3 neurons which receive input data from the
input layer and multiply them by the values of the synaptic
weights denoted by Wij and then forward the resulted
values to the output layer. The output layer is made out of
2 neurons that are directly linked to the rover’s motors
which control its movement and its mechanical operation.

The employed activation function is Sigmoid for
the hidden neurons; whereas, it is linear for the output
neurons. The synaptic weights range from W00 to W13 and
they represent the interconnection between the different
neurons of the network. Additionally, two biases are
employed in the hidden and the output layers to regulate
and limit the output of the network and they are denoted
by bh and bo.

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/

Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

97

Formally, the proposed neural network can be defined as
follows:

NN = { I, T, W, A } where I denotes the set of input nodes,
T denotes the topology of the network including the
number of layers and the number of their neurons, W
denotes the set of synaptic weights values, and A denotes
the activation function.

I = {x, y}
T ={ Lin-2, Lh0-3, Lout-2 }
WLin = { W00, W01, W02, W10, W11, W12, W20, W21, W22 }
Wh0-3 = { W00, W01, W02, W03, W10, W11, W12, W13 }
A = {1/1+e–t , 1}

Figure 1 illustrates the architecture of the proposed ANN.

Figure 1: ANN architecture

6.1 The Back-Propagation Algorithm

The proposed ANN model is trained through a
supervised learning approach using the back-propagation
algorithm [5]. The back-propagation algorithm comprises
two passes: A forward pass which propagates the input
data in the forward direction from the input layer to output
layer of the network. The pass eventually ends up by
generating an output value and computing an error value
while leaving synaptic weights intact. In effect, the error is
calculated by subtracting the desired output from the
actual output just generated. If the error is within an
acceptable range, then the network is trained with new set
of input data; otherwise, a backward pass is executed. The
backward pass is a reverse pass which propagates the error
signal backward through the network layers so as to
update the synaptic weights of the network. The different
steps of the back-propagation algorithm can be
summarized as follows:

1. Feed the network with an input vector and a

corresponding desired output vector.

2. Calculate the output of the network using forward
pass.

3. Calculate the output error signal.
4. If error is within an acceptable range, move to the

next input vector, otherwise go backward and
update the weights of the network.

5. Keep repeating the above steps until all input
vectors are consumed

Additionally, and in order to attain more accurate

results, the back-propagation algorithm was fine-tuned
with extra parameters whose purpose is to regulate and
add more accuracy to the learning process by shifting the
activation function to the left or to the right. The
controlling parameters are listed below:

• Biases: bh and bo
• Learning Parameter: η
• Momentum Alpha Parameter: α

6.2 Computing the Back-Propagation

Algorithm

Computationally, the proposed model is governed by the
following steps and mathematical equations:

1. Perform the forward propagation and calculate
the output signal using (X1 * W1)+(X2 *
W2)+...+(Xi * Wi)+...+ (Xn * Wn)

2. Calculate the Sigmoid activation function (1 /
1+e–input) for the hidden neurons and the linear
activation function (y = v) for the output neurons.

3. Calculate the error using error = desired output –
actual output

4. Perform the back propagation algorithm using the
following equations to update the weights of the
network:

5.
Case1: For the output neurons:

Weight (n+1) = Weight (n) +
α[ΔWeight(n-1)] + (N * Output
(previous neuron) * error)

Case2: For hidden neurons:
Weight (n+1) = Weight (n) +
α[ΔWeight(n-1)] + [N * Output (previous
neuron) * Output (this current hidden
neuron) * (1-Output (this current hidden
neuron)) * ∑k errork * weight kj]

6.3 The Learning Process

Although the back-propagation algorithm looks
simple, computing it is quite an intensive task as it
requires a series of arithmetic operations executed for
hundreds of iterations. Below are the various calculations

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/

Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

98

required to train the proposed network using the back-
propagation algorithm.

Initial Weights:

W00 = 0.17 ; W01 = 0.33 ; W02 = 0.1 ; W10 = 0.3 ; W11
= 0.71 ; W12 = 0.21 ; W20 = 0.15 ; W21 = 0.43 ; W22 =
0.69
W00 = 0.11 ; W01 = 0.03 ; W02 = 0.52 ; W03 = 0.41 ; W10
= 0.93 ; W11 = 0.14 ; W12 = 0.79 ; W13 = 0.66

Input Vector: [0 , 0]
Desired Output Vector: [1 , 1]
Learning parameter: 0.25
Biases: +1

Forward Pass:

Input of h0: (0*0.17) + (0*0.33) + (1*0.1) = 0.1
Output of h0: 1/ 1+exp-0.1 = 0.524

Input of h1: (0*0.3) + (0*0.71) + (1*0.21) = 0.21
Output of h1: 1/ 1+exp-0.21 = 0.552

Input of h2: (0*0.15) + (0*0.43) + (1*0.69) = 0.69
Output of h2: 1/ 1+exp-0.69 = 0.665

Input of O0: (output of h0 * 0.11) + (output of h1 * 0.03)
+ (output of h2 * 0.52) + (1 * 0.41) = (0.524*0.11) +
(0.552*0.03) + (0.665*0.52) + (1*0.41) = 0.05764 +
0.01656 + 0.3458 + 0.41 = 0.83
Output of O0: 0.83 *1 = 0.83 (Linear activation
Function)

Input of O1: = (0.524*0.93) + (0.552*0.14) +
(0.665*0.79) + (1*0.66) = 0.48732 + 0.07728 +
0.52535 + 0.66 = 1.74995
Output of O1: = 1.74995 * 1 = 1.74995 (Linear
activation Function)

Calculating Error for O0: desired – actual = 1 - 0.83 =
0.17
Calculating Error for O1: desired – actual = 1 - 1.74994
= 0. 74994

Back Propagation:

Starting with output Neuron  Case 1 in the algorithm

For W00: weight (new) = weight (old) + (η *
output(previous neuron) * error)= 0.11 + (0.25 * output
(h0) * error (O0)) = 0.11 + (0.25 * 0.524*0.17) =
0.13227
For W10: 0.93 + (0.25 * 0.524 * error (O1))= 0.93 +
(0.25 * 0.524 * (-0.74994)) = 0.83176
For W01: 0.03 + (0.25 * output (h1) * error (O0))= 0.03
+ (0.25 * 0.552* 0.17) = 0.05346

…..etc

Now dealing with the hidden Neurons  Case 2 in the
algorithm

For W00:
Weight (new) = weight (old) + [η *output (previous
neuron) * output (this neuron) * (1 - output(this
neuron)) * Σk errork * weghtkj]
Weight (n+1) = 0.17 + [0.25 * input x * output(h0) *
(1-output(h0)) * (error (O0) * W10 + error (O1) * W10)]
= 0.17 + [0.25 * 0 * 0.524 * (1- 0.524)
*((0.17*0.13227) + (-0.74994 * 0.83176)) = 0.17 + 0 =
0.17 = W00(n+1)

…..etc

7. IMPLEMENTATION

The proposed neural network model was
implemented using MS C#.NET 2008 with over 600 lines
of code. It was compiled under the MS Visual Studio 2008
and the MS .NET Framework 3.5. It encompasses a
training engine that can be fed with various static and
dynamic parameters including initial weights, input data,
learning rate, momentum, and the number of epochs to
execute. Figure 2 depicts the GUI interface of the training
engine while executing the back-propagation algorithm to
train the neural network.

Figure 2: Training Engine for the Proposed ANN

Furthermore, and in order to validate the
proposed neural network, the rover vehicle was simulated
using a software model able to plot trajectories, plan for a
certain path, and move towards its goal location.

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/

Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

99

A sample test case was tested to verify if the
rover is able to move from a given point A to a given point
B while avoiding obstacles. A random point A was
selected as the rover’s initial position and is denoted by
A[x=0 ; y=0]. Another point B was selected as the rover’s
goal location and is denoted by B[x=11.73 ; y=0].
Additionally, an obstacle was set along the x-axis
preventing the rover from heading directly toward its
destination goal in a straight line. The test case was
executed and it clearly revealed that the rover was able to
reach its goal location without passing through the
introduced obstacle. In fact, the rover followed two levels
of routes. One ascending that started from [x=0.8287 ;
y=0.8287] and ended at [x=5.672 ; y=5.898], and one
descending that started from [x=5.672 ; y=5.898] and
ended at B[x=11.73 ; y=0], the actual goal location. Figure
3 graphically plots the passage taken by the rover from its
initial position A to its goal location B.

Figure 3: Simulation for Path-Planning

Due to the large code base behind the training
engine and the rover simulation software, only the
implementation of the function responsible for performing
the backward pass of the back-propagation algorithm is
listed below:

 private void BackPropagation()
 {
 // Case 1: BACKPROPAGATION for OUTPUT NEURONS

 double learningRate = Convert.ToDouble(learningRateTextbox.Text.Trim());

 double momentum = Convert.ToDouble(momentumTextbox.Text.Trim());

 for (int i = 0; i < matrix2.GetLength(0); i++)
 {
 for (int j = 0; j < matrix2.GetLength(1); j++)
 {
 if (j < 3) // j<3 --> 3 hidden neurons
 {
 // Calculating ΔW(n)
 double deltaWeight = (momentum * delta2[i, j]) + (learningRate *
 outputOfHiddenNeurons[j] * error[i]);

 // Calculating W(n+1)
 matrix2[i, j] = matrix2[i, j] + deltaWeight;

 // Updating the ΔW(n) matrix
 delta2[i, j] = deltaWeight;
 }

 else
 {
 // Calculating ΔW(n)
 double deltaWeight = (momentum * delta2[i, j]) + (learningRate * bias *
 error[i]);

 // Calculating W(n+1)
 matrix2[i, j] = matrix2[i, j] + deltaWeight;

 // Updating the ΔW(n) matrix
 delta2[i, j] = deltaWeight;
 }

 if (traceON == true)
 outputTextbox.AppendText("matrix2[" + i + "][" + j + "] = " + matrix2[i, j] + " ");
 }

 if (traceON == true)
 outputTextbox.AppendText("\r\n");
 }

 if (traceON == true)
 outputTextbox.AppendText("\r\n\r\n");

 // Case 2: BACKPROPAGATION for HIDDEN NEURONS

 for (int i = 0; i < matrix1.GetLength(0); i++)
 {
 for (int j = 0; j < matrix1.GetLength(1); j++)
 {
 // Calculating ΔW(n)
 double deltaWeight = (momentum * delta1[i, j]) + (learningRate * input[index, j] *
 outputOfHiddenNeurons[i] * (1 - outputOfHiddenNeurons[i]) * (error[0] *
 matrix2[0, i] + error[1] * matrix2[1, i]));

 // Calculating W(n+1)
 matrix1[i, j] = matrix1[i, j] + deltaWeight;

 // Updating the ΔW(n) matrix
 delta1[i, j] = deltaWeight;

 if (traceON == true)
 outputTextbox.AppendText("matrix1[" + i + "][" + j + "] = " + matrix1[i, j] + " ");
 }

 if (traceON == true)
 outputTextbox.AppendText("\r\n");
 }
 }

8. CONCLUSIONS & FUTURE WORK

This paper presented an artificial neural network
model for robotic rover systems to perform autonomous
path-planning during space exploration missions. The
proposed ANN is a three-layer network composed of three
layers: an input, a hidden, and an output layer. The
network is trained through a supervised learning approach
using the back-propagation algorithm. The purpose of the
model is to control the movement of space rovers allowing
them to travel across planetary surfaces while avoiding
obstacles in a complete autonomous manner. Experiments
conducted showed that a software-simulated rover was
able to avoid collision with obstacles and reached its goal
location through the safe and correct trajectory.

As future work, the back-propagation algorithm,
used in training the proposed network, is to be parallelized
so as to take advantage of parallel and distributed
computing platforms and speed-up the execution time of
the training process.

ACKNOWLEDGMENTS

This research was funded by the Lebanese Association for
Computational Sciences (LACSC), Beirut, Lebanon, under

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/

Volume 2 No.2, February 2012 ISSN 2224-3577

International Journal of Science and Technology

 ©2012 IJST. All rights reserved

http://www.ejournalofsciences.org

100

the “Service Oriented Architecture Robotics Research
Project – SOARRP2012”.

REFERENCES

[1] Amel Zerigui, Xiang Wu, Zong-Quan Deng, “A

Survey of Rover Control Systems”, International
Journal of Computer Sciences and Engineering
Systems, Vol. 1, No. 4, pp. 105-109, 2007.

[2] Roland Siegwart, Illah R. Nourbakhsh, Davide
Scaramuzza, Introduction to Autonomous Mobile
Robots, 2nd ed, The MIT Press, 2011.

[3] Jean-Claude Latombe, Robot Motion Planning,

Kluwer Academic Publishers, 1991.

[4] Chowdhury, F.N., Wahi, P., Raina, R., Kaminedi, S.,

“A survey of neural networks applications in
automatic control”, Proceedings of the 33rd
Southeastern Symposium on System Theory, 2001.

[5] Paul J. Werbos, Beyond Regression: New Tools for

Prediction and Analysis in the Behavioral Sciences,
PhD thesis, Harvard University, 1974.

[6] Mars Exploration Rover, NASA Facts, National

Aeronautics and Space Administration, Jet
Propulsion Laboratory, California Institute of
Technology Pasadena, 2004.

[7] Sarah Loff, NASA's Space Exploration Vehicle

(SEV), NASA Official: Rocky Lind, 2011.

[8] Amy Svitak, “Cost of NASA's Next Mars Rover Hits

Nearly $2.5 Billion.”, 2011,
http://www.space.com/10762-nasa-mars-rover-
overbudget.html

[9] Wesley T. Huntress JR., Mikhail Ya Marov, Soviet
Robots in the Solar System: Mission Technologies
and Discoveries, Springer, 2011.

[10] Jun Wang, Xiaofeng Liao, Zhang Yi, “Advances in

Neural Networks”, Second International Symposium
on Neural Networks, Chongqing, China, 2005.

[11] Simon Haykin, Neural Networks: A Comprehensive

Foundation, Prentice Hall, 2 ed, 1998.

[12] Simon Haykin, Neural Networks and Learning

Machines, 3rd ed., Prentice Hall, 2008.

[13] Sotiris B. Kotsiantis, “Supervised Machine Learning:

A Review of Classification Techniques”, Informatica,
Vol. 31, No. 3, pp. 249-268, 2007.

[14] Martin Anthony, Peter L. Bartlett, Neural Network
Learning: Theoretical Foundations, Cambridge
University Press, 2009.

[15] Baomin Feng, Guangcheng Ma, Weinan Xie,
Changhong Wang, “Robust tracking control of space
robot via neural network”, 1st International
Symposium on Systems and Control in Aerospace
and Astronautics, 2006.

[16] Shuzhi S. Ge Hang, C.C. Woon, L.C., “Adaptive

neural network control of robot manipulators in task
space”, IEEE Transactions on Industrial Electronics,
1997.

[17] Changhong Wang,Baomin Feng, Guangcheng Ma,

Chuang Ma, “Robust tracking control of space robots
using fuzzy neural network”, IEEE International
Symposium on Computational Intelligence in
Robotics and Automation, 2005.

[18] Livianu, Mathew Joseph, “Human-in-the-loop neural

network control of a planetary rover on harsh
terrain”, Thesis, Georgia Institute of Technology,
2008.

[19] Danica Janglová, “Neural Networks in Mobile Robot

Motion”, International Journal of Advanced Robotic
Systems, Vol. 1, No 1, pp. 15-22, 2004.

[20] Martin Peniak, Davide Marocco, Angelo Cangelosi,

“Autonomous Robot Exploration Of Unknown
Terrain: A Preliminary Model Of Mars Rover
Robot”, In Proceedings of 10th ESA Workshop on
Advanced Space Technologies for Robotics and
Automation, Noordwijk, The Netherlands, 2008.

[21] Tani.J, “Model-based Learning for Mobile Robot

Navigation from the Dynamical Systems
Perspective”, IEEE Trans. on Syst., Man and Cyb.,
Vol. 26, No.3, pp. 421-436, 1996.

http://www.ejournalofsciences.org/
http://www.ejournalofsciences.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335
http://www.informatik.uni-trier.de/~ley/db/journals/informaticaSI/informaticaSI31.html#Kotsiantis07
http://www.informatik.uni-trier.de/~ley/db/journals/informaticaSI/informaticaSI31.html#Kotsiantis07
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10835
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10835
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=41
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10413
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10413
http://smartech.gatech.edu/browse?value=Livianu,%20Mathew%20Joseph&type=author%20

