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ABSTRACT 
 
Today, robotics is an auspicious and fast-growing branch of technology that involves the manufacturing, design, and 
maintenance of robot machines that can operate in an autonomous fashion and can be used in a wide variety of applications 
including space exploration, weaponry, household, and transportation. More particularly, in space applications, a common 
type of robots has been of widespread use in the recent years. It is called planetary rover which is a robot vehicle that 
moves across the surface of a planet and conducts detailed geological studies pertaining to the properties of the landing 
cosmic environment. However, rovers are always impeded by obstacles along the traveling path which can destabilize the 
rover’s body and prevent it from reaching its goal destination. This paper proposes an ANN model that allows rover 
systems to carry out autonomous path-planning to successfully navigate through challenging planetary terrains and follow 
their goal location while avoiding dangerous obstacles. The proposed ANN is a multilayer network made out of three 
layers: an input, a hidden, and an output layer. The network is trained in offline mode using back-propagation supervised 
learning algorithm. A software-simulated rover was experimented and it revealed that it was able to follow the safest 
trajectory despite existing obstacles. As future work, the proposed ANN is to be parallelized so as to speed-up the 
execution time of the training process. 
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1.    INTRODUCTION 
 

Robotics technology is emerging at a rapid pace, 
offering new possibilities for automating tasks in many 
challenging applications, especially in space explorations, 
military operations, underwater missions, domestic 
services, and medical procedures. Particularly, in space 
exploration, robotic devices are formally known as 
planetary rovers or simply rovers and they are aimed at 
conducting physical analysis of planetary terrains and 
astronomical bodies, and collecting data about air pressure, 
climate, temperature, wind, and other atmospheric 
phenomena surrounding the landing sites [1]. Basically, 
rovers can be autonomous capable of operating with little 
or no assistance from ground control or they can be 
remotely controlled from earth ground stations called RCC 
short for Remote Collaboration Center [2].  

In essence, the movement of autonomous rovers 
is not directed by human operators; instead, it is controlled 
by complex algorithms that allow the rover to traverse 
paths on multiple terrains while avoiding obstacles and 
path errors. This capability is more formally known as 
path-planning in which a rover or any robotic vehicle can 
perform terrain analysis and select the safest route to travel 
across [3]. The rover can then proceed towards the goal 
location over the selected trajectory while avoiding 
obstacles without previous knowledge of their existence.  

This paper proposes a path-planning solution for 
autonomous robotic planetary rover systems based on 
artificial neural network (ANN) [4]. The proposed neural 
network is multi-layer consisting of three consecutive 

layers: an input, a hidden, and an output layer. The input 
layer is made out of two neurons that are fed by the 
rover’s sensors which are designed to detect obstacles of 
any size and shape. The hidden layer is made out of three 
neurons and its purpose is to read input data and multiply 
them by a certain weight and then forward the results to 
the next layer. The output layer is made out of two 
neurons that are directly linked to the rover’s motors 
which control its movement and its mechanical operation. 
The proposed ANN uses a mix of activation functions 
including Sigmoid for the hidden neurons and linear for 
the output neurons. Moreover, the model employs a 
supervised learning approach using the back-propagation 
algorithm [5] to train the network in offline mode.  

The proposed artificial neural network is meant to 
allow the rover system selects the best path through any 
given ground by predicting the existing obstacles along the 
path and the harsh structure of the landing terrain. This 
would allow the rover to navigate autonomously and 
safely toward its goal location and complete its designed 
task. 
 
2.    SPACE EXPLORATION ROVERS 
 

Fundamentally, a rover is a space exploration 
robotic vehicle used particularly in exploring the land of a 
planet. It has the capability to travel across the surface of a 
landscape and other cosmic bodies. A rover has many 
features: It can generate power from solar panels; capture 
high-resolution images; move in 360 degrees with the help 
of a navigation camera (Navcam); walk across obstacles 
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such as bumps and rocks; conduct deep analysis and 
record measurements using multiple types of 
spectrometers; find properties of materials to identify their 
types and their composition; search for geological clues 
such as water to detect any presence of life on the landing 
environment; and inspect the mineralogy and texture of 
the local terrain using panoramic cameras (Pancam) [6][7]. 

Financially, robotic rovers can cost to build, test, 
and deploy hundreds of millions of dollars sometimes 
billions of dollars [8]. Historically, Lunokhod and 
Marsokhod were two space rovers designed and launched 
by the soviets in the 70s [9]; while, Spirit and Opportunity 
were two US rovers produced by NASA, the space agency 
of the United States, between year 2004 and 2010 as part 
of NASA's ongoing Mars Exploration Rover Mission 
(MER). 

Inherently, there exist two types of rover 
vehicles: The first type is the human-controlled rovers 
which are remotely manipulated from earth and usually 
guided to perform a particular operation. Communication 
between the rover and the earth control occurs through the 
Deep Space Network (DSN), which is an international 
network of large antennas with communication facilities 
that supports interplanetary spacecraft missions. Currently, 
DSN comprises three deep-space communications 
facilities located in Mojave Desert in California, west of 
Madrid in Spain, and south of Canberra in Australia.  

The second type is the autonomous rovers which 
can complete their desired tasks without constant human 
direction. Space exploration rovers are distinguished by a 
high degree of autonomy as they can cope with their 
changing environment, automatically gain information 
about the landing sites, survive a disaster or a failure, 
operate for prolonged periods of time, execute predefined 
operations, and navigate across unstructured terrains 
without human assistance.  

In practice, autonomous rovers are most of the 
time based on artificial evolution to reinforce learning 
within their environments. This method of learning is 
known as machine learning in which a system can learn 
from experience data to generalize so that it performs 
correctly in new and unseen situations. Predominantly, 
artificial neural network (ANN), one of the most 
successfully applied machine learning approaches in 
robotics field, is used to control autonomous rover systems 
and provide them an intelligent navigation behavior [10]. 
In effect, ANN allows the rover to plan and execute 
collision-free motions within its environment and to reach 
its goal location while avoiding obstacles and dangerous 
cosmic objects. 
 
3.    ARTIFICIAL NEURAL NETWORKS 
 

Artificial neural networks or ANNs for short are 
very influential brain-inspired computational models, 
which have been employed in various areas such as 

computing, medicine, engineering, economics, and many 
others. ANNs are composed of a certain number of simple 
computational elements called neurons, organized into a 
structured graph topology made out of several consecutive 
layers and immensely interconnected through a series of 
links called the synaptic weights. Synaptic weights are 
often associated with variable numerical values that can be 
adapted so as to allow the ANN to change its behavior 
based on the problem being tackled [11]. 

Training an artificial neural network is usually 
done by feeding the network’s input with a pattern to learn. 
The network then transmits the pattern through its weights 
and neurons until it generates a final output value. 
Afterwards, a training or a learning algorithm compares 
the produced output value to an expected output and if the 
error range is high, the algorithm marginally alters the 
network’s weights so that if the same pattern is fed again 
to the network, the output error would be smaller than the 
previous iteration. This process gets repeated for many 
cycles called epochs using different set of input patterns 
until the network produces acceptable outputs for all 
inputs [12]. This learning progression allows the network 
to identify many patterns and further generalize to new 
and unseen patterns. Such type of training is called 
supervised learning which uses classified pattern 
information to train the network in offline mode. On the 
other hand, there exists what so called the unsupervised 
learning which uses only minimum information without 
pre-classification to train the network while being in 
online mode [13]. Some of the most successful supervised 
learning approaches are feed-forward and back-
propagation; while, the most successful unsupervised 
learning approaches are the Hebbian and the competitive 
learning rule. 
 
4. ADVANTAGES OF ANN IN SPACE 

APPLICATIONS  
 

Artificial neural networks have many advantages 
in space applications due to the following reasons [14]: 
Generality: Usually, a space rover system is required to 
process a very high number of parameters that are variable, 
complex, and received from multiple sources. Neural 
networks can handle such large-scale problems as it is able 
to classify objects well even when the distribution of 
objects in the N-dimensional parameter space is very 
complex.  
Performance: Due to the nature of neural networks in 
executing in a parallel fashion, they can solve problems 
with multiple constraints and large number of data 
elements at high-speed and simultaneously. Using parallel 
technology, rover systems can increase their 
responsiveness and quickness in detecting, identifying, 
and handling new patterns behaviors. 
Adaptability: Due to the dynamic and always-evolving 
conditions and challenges in space exploration missions, 
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space rovers are always faced with new trends and patterns. 
Neural networks can cope with such circumstances as they 
are adaptable to unseen situations and have the capability 
to learn data, identify new patterns, and detect trends. A 
process that is too complex to be achieved by traditional 
computational techniques  
Low energy consumption: Commonly, rovers are 
powered by solar panels which generate energy from light 
and photons particles, and then store it into internal 
batteries with limited lifetime and capacity. A supervised-
trained neural network often learns and adjusts its synaptic 
weights in offline mode; thus, relieving the rover from 
carrying out insensitive mathematical computations at 
runtime and consequently reducing processing power, 
energy, and power consumption. 
Robustness & Fault Tolerance: Since in a space 
applications a cosmic ray can be very destructive, it has 
however a little impact on neural networks as it can only 
destroy a few of the neurons, but not the thousands and the 
millions of neurons which would be able to compensate 
for the damage, and therefore the output of the network 
would not be significantly affected. 
 
5.    RELATED WORK 

 
There are a large variety of solutions already 

developed for robotic rover systems that are based on 
artificial neural networks. Several of them are examined in 
this section: 

[15] proposed a neural network model for robust 
control of space robots. The proposed ANN uses a radial-
basis-function (RBF) to handle the various system 
uncertainties. Besides, the Lyapunov unsupervised 
learning algorithm is used to train the network and adapt 
its parameters in online mode. [16] proposed an adaptive 
approach for controlling robot manipulators using neural 
networks. The controller is based on the Gaussian radial-
basis-function (GRF) which is meant to provide uniformly 
stable adaptation and asymptotically tracking for the 
robotic vehicle. The system features a robust controller to 
overcome the neural network modeling errors and the 
bounded instabilities. [17] proposed a robust model for 
space robots based on fuzzy neural network (FNN) 
controller. The tracking controller can attain very accurate 
goals in the presence of uncertainties without using linear 
parameterization and fixed-base robot manipulators. [18] 
proposed a model for solving the wheel slip problem in 
space rover exploration devices. The model employs a 
high fidelity traversability analysis (HFTA) algorithm with 
path and energy cost functions to predict and detect 
possible slips while the rover is moving. As a result, the 
rover can choose the best route via any given topography 
by avoiding high slip paths. [19] proposed an intelligent 
model for moving robots with translational and rotational 
motion deployed in partially structured environment. The 
model is based on using two neural networks: The first 

network is utilized to identify the open space using 
ultrasound range finder data; while, the second network is 
utilized to identify a safe route for the robot to move 
across while avoiding the nearby obstacles. [20] presented 
an advanced robotic architecture for the Rover Mars robot. 
The system uses advanced infrared sensors coupled with 
an artificial neural network which is trained using a 
supervised learning technique. The property of this model 
is that it uses evolutionary robotics techniques in which an 
evolvable threshold is used for the rover’s sensors. Its 
purpose is to alter the activation range of infrared sensors 
in order to differentiate between rocks and holes from the 
noise originating from landing terrain. The results were a 
successful rover able of doing several autonomous 
operations. [21] proposed a neural network approach for 
robotic systems based on the Jordan architecture. In this 
approach, the robot can learn at runtime the different 
patterns of the environment using an internal recurrent 
artificial neural network. The robot can predict through a 
series of input sensors the different objects before it. It can 
then generate navigation steps based on the output signal 
of the network that would drive the rover’s motors devices. 
 
6.    THE PROPOSED NEURAL NETWORK 

MODEL 
 

This paper proposes an artificial neural network 
(ANN) model for robotic planetary rover systems to 
accomplish path-planning on harsh and bumpy terrains. Its 
aim is to let the rover vehicle navigates through and 
follows its intended goal location while avoiding collisions 
with obstacles, rocks, holes, and sharp slopes of arbitrary 
shape and size. The movement of the rover is fully 
autonomous as it is totally controlled by the neural 
network without any human assistance except when 
training the network in offline mode. 

The proposed ANN is a three layers “2-3-2” 
network composed of an input, a hidden, and an output 
layer. The input layer is made out of 2 input source nodes 
x and y with two corresponding neurons which are 
physically fed by the rover’s sensors. The hidden layer is 
made out of 3 neurons which receive input data from the 
input layer and multiply them by the values of the synaptic 
weights denoted by Wij and then forward the resulted 
values to the output layer. The output layer is made out of 
2 neurons that are directly linked to the rover’s motors 
which control its movement and its mechanical operation. 

The employed activation function is Sigmoid for 
the hidden neurons; whereas, it is linear for the output 
neurons. The synaptic weights range from W00 to W13 and 
they represent the interconnection between the different 
neurons of the network. Additionally, two biases are 
employed in the hidden and the output layers to regulate 
and limit the output of the network and they are denoted 
by bh and bo. 
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Formally, the proposed neural network can be defined as 
follows: 
 
NN = { I, T, W, A } where I denotes the set of input nodes, 
T denotes the topology of the network including the 
number of layers and the number of their neurons, W 
denotes the set of synaptic weights values, and A denotes 
the activation function. 
 
I = {x, y} 
T ={ Lin-2, Lh0-3, Lout-2 } 
WLin = { W00, W01, W02, W10, W11, W12, W20, W21, W22 } 
Wh0-3 = { W00, W01, W02, W03, W10, W11, W12, W13 } 
A = {1/1+e–t ,  1} 
 
Figure 1 illustrates the architecture of the proposed ANN. 
 

 
Figure 1:  ANN architecture 

 
6.1 The Back-Propagation Algorithm 
 

The proposed ANN model is trained through a 
supervised learning approach using the back-propagation 
algorithm [5]. The back-propagation algorithm comprises 
two passes: A forward pass which propagates the input 
data in the forward direction from the input layer to output 
layer of the network. The pass eventually ends up by 
generating an output value and computing an error value 
while leaving synaptic weights intact. In effect, the error is 
calculated by subtracting the desired output from the 
actual output just generated. If the error is within an 
acceptable range, then the network is trained with new set 
of input data; otherwise, a backward pass is executed. The 
backward pass is a reverse pass which propagates the error 
signal backward through the network layers so as to 
update the synaptic weights of the network. The different 
steps of the back-propagation algorithm can be 
summarized as follows: 

 
1. Feed the network with an input vector and a 

corresponding desired output vector. 

2. Calculate the output of the network using forward 
pass. 

3. Calculate the output error signal. 
4. If error is within an acceptable range, move to the 

next input vector, otherwise go backward and 
update the weights of the network. 

5. Keep repeating the above steps until all input 
vectors are consumed 

 
Additionally, and in order to attain more accurate 

results, the back-propagation algorithm was fine-tuned 
with extra parameters whose purpose is to regulate and 
add more accuracy to the learning process by shifting the 
activation function to the left or to the right. The 
controlling parameters are listed below: 
 

• Biases: bh and bo 
• Learning Parameter: η 
• Momentum Alpha Parameter: α 

 
6.2 Computing the Back-Propagation 

Algorithm 
 
Computationally, the proposed model is governed by the 
following steps and mathematical equations: 
 

1. Perform the forward propagation and calculate 
the output signal using (X1 * W1)+(X2 * 
W2)+...+(Xi * Wi)+...+ (Xn * Wn) 

2. Calculate the Sigmoid activation function (1 / 
1+e–input) for the hidden neurons and the linear 
activation function (y = v) for the output neurons. 

3. Calculate the error using error = desired output – 
actual output 

4. Perform the back propagation algorithm using the 
following equations to update the weights of the 
network: 

5.  
Case1: For the output neurons: 

Weight (n+1) = Weight (n) + 
α[ΔWeight(n-1)] +  (N * Output 
(previous neuron) * error) 

Case2: For hidden neurons: 
Weight (n+1) = Weight (n) + 
α[ΔWeight(n-1)] + [N * Output (previous 
neuron) * Output (this current hidden 
neuron) * (1-Output (this current hidden 
neuron)) * ∑k  errork * weight kj ] 
 

6.3 The Learning Process 
 

Although the back-propagation algorithm looks 
simple, computing it is quite an intensive task as it 
requires a series of arithmetic operations executed for 
hundreds of iterations. Below are the various calculations 
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required to train the proposed network using the back-
propagation algorithm. 
 
Initial Weights: 
 

W00 = 0.17 ;  W01 = 0.33 ; W02 = 0.1 ;  W10 =  0.3 ;  W11 
= 0.71 ; W12 = 0.21  ; W20 = 0.15 ; W21 = 0.43 ; W22 = 
0.69 
W00 = 0.11 ; W01 = 0.03 ; W02 = 0.52 ; W03 = 0.41 ; W10 
= 0.93 ; W11 = 0.14 ; W12 = 0.79 ; W13 = 0.66 
 
Input Vector: [0 , 0] 
Desired Output Vector: [1 , 1] 
Learning parameter: 0.25 
Biases: +1 

 
Forward Pass: 

Input of h0: (0*0.17) + (0*0.33) + (1*0.1) = 0.1 
Output of h0: 1/ 1+exp-0.1 = 0.524 
 
Input of h1: (0*0.3) + (0*0.71) + (1*0.21) = 0.21 
Output of h1: 1/ 1+exp-0.21 = 0.552 

 
Input of h2: (0*0.15) + (0*0.43) + (1*0.69) = 0.69 
Output of h2: 1/ 1+exp-0.69 = 0.665 
 
Input of O0: (output of h0 * 0.11) + (output of h1 * 0.03) 
+ (output of h2 * 0.52) + (1 * 0.41) = (0.524*0.11) + 
(0.552*0.03) + (0.665*0.52) + (1*0.41) = 0.05764 + 
0.01656 + 0.3458 + 0.41 = 0.83 
Output of O0: 0.83 *1 = 0.83 (Linear activation 
Function) 

  
Input of O1:  = (0.524*0.93) + (0.552*0.14) + 
(0.665*0.79) + (1*0.66) = 0.48732 + 0.07728 + 
0.52535 + 0.66 = 1.74995 
Output of O1:  = 1.74995 * 1 = 1.74995 (Linear 
activation Function) 
  
Calculating Error for O0: desired – actual = 1 - 0.83 = 
0.17 
Calculating Error for O1: desired – actual = 1 - 1.74994 
= 0. 74994 

 
Back Propagation: 

Starting with output Neuron  Case 1 in the algorithm 
 
For W00:  weight (new) = weight (old) + ( η * 
output(previous neuron) * error)= 0.11 + (0.25 * output 
(h0) * error (O0)) = 0.11 + (0.25 * 0.524*0.17) = 
0.13227 
For W10:  0.93 + (0.25 * 0.524 * error (O1))= 0.93 + 
(0.25 * 0.524 * (-0.74994)) = 0.83176 
For W01:  0.03 + (0.25 * output (h1) * error (O0))= 0.03 
+ (0.25 * 0.552* 0.17) = 0.05346 

 
…..etc 

 
Now dealing with the hidden Neurons  Case 2 in the 
algorithm 
 
For W00:  
Weight (new) = weight (old) + [η *output (previous 
neuron) * output (this neuron) * (1 - output(this 
neuron)) * Σk errork  * weghtkj] 
Weight (n+1) = 0.17 + [0.25 * input x * output(h0) * 
(1-output(h0)) * (error (O0) * W10 + error (O1) * W10)] 
= 0.17 + [0.25 * 0 * 0.524 * (1- 0.524) 
*((0.17*0.13227) + (-0.74994 * 0.83176)) = 0.17 + 0 = 
0.17 = W00(n+1) 
 
…..etc 

 
7.    IMPLEMENTATION 
 

The proposed neural network model was 
implemented using MS C#.NET 2008 with over 600 lines 
of code. It was compiled under the MS Visual Studio 2008 
and the MS .NET Framework 3.5. It encompasses a 
training engine that can be fed with various static and 
dynamic parameters including initial weights, input data, 
learning rate, momentum, and the number of epochs to 
execute. Figure 2 depicts the GUI interface of the training 
engine while executing the back-propagation algorithm to 
train the neural network. 
 

 
 

Figure 2: Training Engine for the Proposed ANN 
 

Furthermore, and in order to validate the 
proposed neural network, the rover vehicle was simulated 
using a software model able to plot trajectories, plan for a 
certain path, and move towards its goal location. 
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A sample test case was tested to verify if the 
rover is able to move from a given point A to a given point 
B while avoiding obstacles. A random point A was 
selected as the rover’s initial position and is denoted by 
A[x=0 ; y=0]. Another point B was selected as the rover’s 
goal location and is denoted by B[x=11.73 ; y=0]. 
Additionally, an obstacle was set along the x-axis 
preventing the rover from heading directly toward its 
destination goal in a straight line. The test case was 
executed and it clearly revealed that the rover was able to 
reach its goal location without passing through the 
introduced obstacle. In fact, the rover followed two levels 
of routes. One ascending that started from [x=0.8287 ; 
y=0.8287] and ended at [x=5.672 ; y=5.898], and one 
descending that started from [x=5.672 ; y=5.898] and 
ended at B[x=11.73 ; y=0], the actual goal location. Figure 
3 graphically plots the passage taken by the rover from its 
initial position A to its goal location B. 

 

 
 

Figure 3: Simulation for Path-Planning 
 

Due to the large code base behind the training 
engine and the rover simulation software, only the 
implementation of the function responsible for performing 
the backward pass of the back-propagation algorithm is 
listed below:         
 
 

      private void BackPropagation() 
        { 
            // Case 1: BACKPROPAGATION for OUTPUT NEURONS 
 
            double learningRate = Convert.ToDouble(learningRateTextbox.Text.Trim()); 
 
            double momentum = Convert.ToDouble(momentumTextbox.Text.Trim()); 
 
            for (int i = 0; i < matrix2.GetLength(0); i++) 
            { 
                for (int j = 0; j < matrix2.GetLength(1); j++) 
                { 
                    if (j < 3) // j<3 --> 3 hidden neurons 
                    { 
                        // Calculating ΔW(n) 
                        double deltaWeight = (momentum * delta2[i, j]) + (learningRate *  
                                                            outputOfHiddenNeurons[j] * error[i]); 
 
                        // Calculating W(n+1) 
                        matrix2[i, j] = matrix2[i, j] + deltaWeight; 
 
                        // Updating the ΔW(n) matrix  
                        delta2[i, j] = deltaWeight;  
                    } 

                    else 
                    { 
                        // Calculating ΔW(n) 
                        double deltaWeight = (momentum * delta2[i, j]) + (learningRate * bias *  
                                                            error[i]); 
 
                        // Calculating W(n+1) 
                        matrix2[i, j] = matrix2[i, j] + deltaWeight; 
 
                        // Updating the ΔW(n) matrix  
                        delta2[i, j] = deltaWeight; 
                    } 
                     
                    if (traceON == true) 
                        outputTextbox.AppendText("matrix2[" + i + "][" + j + "] = " + matrix2[i, j] + "  "); 
                } 
 
                if (traceON == true) 
                    outputTextbox.AppendText("\r\n"); 
            } 
 
            if (traceON == true) 
                outputTextbox.AppendText("\r\n\r\n"); 
 
 
            // Case 2: BACKPROPAGATION for HIDDEN NEURONS 
 
            for (int i = 0; i < matrix1.GetLength(0); i++) 
            { 
                for (int j = 0; j < matrix1.GetLength(1); j++) 
                { 
                    // Calculating ΔW(n) 
                    double deltaWeight = (momentum * delta1[i, j]) + (learningRate * input[index, j] * 
                    outputOfHiddenNeurons[i] * (1 - outputOfHiddenNeurons[i]) * (error[0] *  
                                                                 matrix2[0, i] + error[1] * matrix2[1, i])); 
 
                    // Calculating W(n+1) 
                    matrix1[i, j] = matrix1[i, j] + deltaWeight; 
 
                    // Updating the ΔW(n) matrix  
                    delta1[i, j] = deltaWeight; 
 
                    if (traceON == true) 
                        outputTextbox.AppendText("matrix1[" + i + "][" + j + "] = " + matrix1[i, j] + "  "); 
                } 
 
                if (traceON == true) 
                    outputTextbox.AppendText("\r\n"); 
            } 
        } 
 

8.    CONCLUSIONS & FUTURE WORK 
 

This paper presented an artificial neural network 
model for robotic rover systems to perform autonomous 
path-planning during space exploration missions. The 
proposed ANN is a three-layer network composed of three 
layers: an input, a hidden, and an output layer. The 
network is trained through a supervised learning approach 
using the back-propagation algorithm. The purpose of the 
model is to control the movement of space rovers allowing 
them to travel across planetary surfaces while avoiding 
obstacles in a complete autonomous manner. Experiments 
conducted showed that a software-simulated rover was 
able to avoid collision with obstacles and reached its goal 
location through the safe and correct trajectory. 

As future work, the back-propagation algorithm, 
used in training the proposed network, is to be parallelized 
so as to take advantage of parallel and distributed 
computing platforms and speed-up the execution time of 
the training process. 
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