
Advances in Computer Science and its Applications (ISSN: 2166-2924) 9
Vol. 1, No. 1, March 2012
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Distributed, Cross-Platform, and Regression Testing
Architecture for Service-Oriented Architecture

Youssef Bassil
LACSC –Lebanese Association for Computational Sciences, Registered under No. 957, 2011, Beirut, Lebanon

Email: youssef.bassil@lacsc.org

Abstract– As per leading IT experts, today’s large enterprises are going through business transformations. They are adopting
service-based IT models such as SOA to develop their enterprise information systems and applications. In fact, SOA is an integration
of loosely-coupled interoperable components, possibly built using heterogeneous software technologies and hardware platforms. As a
result, traditional testing architectures are no more adequate for verifying and validating the quality of SOA systems and whether
they are operating to specifications. This paper first discusses the various state-of-the-art methods for testing SOA applications, and
then it proposes a novel automated, distributed, cross-platform, and regression testing architecture for SOA systems. The proposed
testing architecture consists of several testing units which include test engine, test code generator, test case generator, test executer,
and test monitor units. Experiments conducted showed that the proposed testing architecture managed to use parallel agents to test
heterogeneous web services whose technologies were incompatible with the testing framework. As future work, testing non-
functional aspects of SOA applications are to be investigated so as to allow the testing of such properties as performance, security,
availability, and scalability.

Keywords –Testing Architecture; Service-Oriented Architecture; Web-Service; Cross-Platform Testing; Regression Testing

1. Introduction

Many of today’s enterprises are converting their
information systems into new IT models based on e-
services called Service-Oriented Architecture or SOA for
short [1]. Fundamentally, SOA is the practice of
designing and developing information systems using
loosely-coupled interoperable software components [2].
SOA offers a number of benefits and advantages, such as
flexibility, agility, reusability, scalability, maintainability,
and interoperability [3]. However, adopting SOA comes
with significant challenges, mostly related to the testing
of SOA-based systems [4]. In fact, as SOA is an
integration of several heterogeneous components, each
built using different technologies and having
incompatible interfaces, validating and verifying the
operation of SOA can be viewed as a complex and
challenging computing problem.

This paper presents a number of already existing
approaches and techniques for testing SOA applications
from different test levels including unit, integration,
regression, distributed, and functional testing.

Furthermore, this paper proposes a new automated,
distributed, cross-platform, and regression testing
architecture for testing SOA applications and their web
service components. It is made out of a test engine unit
capable of conducting regression testing; a test code
generator unit capable of generating client scripts for test
execution; a test case generator unit capable of generating
test conditions, variables, and data sequences; a test
executer unit capable of applying test cases to web
services; a test monitor unit capable of evaluating the
testing results; and a database that stores valuable testing
parameters throughout the testing process.

The proposed architecture has many benefits: It is
distributed as it supports parallel testing of web services
over multiple distributed server machines; it is cross-
platform as it supports the testing of heterogeneous web

services built using heterogeneous technologies; and it is
capable of regression testing as it supports partial testing
of sub-systems that have been recently changed or
updated. All in all, the proposed architecture is meant to
automate the testing of complex and heterogeneous SOA-
based systems while achieving a good level of efficiency,
performance, and quality.

2. Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a model for
system development based on loosely-integrated suite of
services that can be used within multiple business
domains [5]. Commonly, SOA is built using web service
software components which are designed to support
interoperable machine-to-machine interaction over a
network. Predominantly, web services use SOAP (Simple
Object Access Protocol), an XML-based protocol, to
communicate over the HTTP protocol. Besides, they use
WSDL (Web Service Description Language) to describe
their internal functionalities and UDDI (Universal
Description, Discovery, and Integration), a global registry
and repository, to register and store their WSDLs [6].
Web services are governed by the producer-
consumer/provider-requester model in which the provider
owns the necessary equipment to host web services, and
the requester connects to these web services and starts
calling their exposed functions through method
invocation mechanism. Several styles and types of web
services exist, they include but not limited to SOAP,
REST, .NET Remoting, RMI, RPC, and others. Figure 1
depicts the provider-requester model of a SOAP-based
web service.



Youssef Bassil, ACSA, Vol. 1, No. 1, pp. 9-15, March 2012 10

Figure 1. Provider-Requester Model of Web Services

3. Testing SOA

Software testing is an investigation carried out to
determine whether a software is working correctly
according to specifications [7]. The scope of software
testing includes the validation and verification of the
system’s functional as well as non-functional properties.
In that sense, the testing process can be defined as:

 Find if a software product is free of defects and is
producing a correct output and;

 Find if a software product meets the customer’s
requirements as well as other technical
requirements that guided its design and
development.

As manual testing is a laborious and time consuming
process, test automation has been employed thoroughly in
many domains and fields. In essence, test automation uses
software to perform, control, and monitor the execution
of testing. It utilizes test cases which are set of input
variables and their expected output that the test executer
will apply to the software under test to determine whether
it is working correctly according to specifications [8].

Since SOA-based systems are form of software, they
should be tested too; however, since they are composed
of a collection of fine-grained software components
distributed over a network, they must be tested from a
service-by-service viewpoint i.e. testing each web service
of the SOA in isolation; from an end-to-end viewpoint i.e.
testing the SOA as an aggregate of sub-systems; and from
an interface-by-interface viewpoint i.e. testing the
interoperability between the different web services of the
SOA [9]. The different steps for testing SOA applications
can be outlined as follows:

1. For a given SOA system under test, generate and
execute a set of test requests.

2. Receive and evaluate the returned responses.
3. If the evaluation yields to a negative feedback,

then the cause could be located in any of the web
services that make up the SOA system under test:
i. Repeat the above steps but for every service in

isolation.
ii. Find the malfunctioning web service, and

refine it accordingly.
4. Repeat step 1 to step 3 until a positive feedback is

obtained.

In practice, SOA can be tested using different test
levels and techniques which can be summarized as
follows [10]:

Unit Testing: It is the process of testing individual
web services in isolation. The web service is
disconnected from the SOA and tested separately in
offline mode. Unit testing is usually conducted by
developers to verify that the basic functionalities of web
services are working correctly and according to
specifications.

Integration Testing: It is the process of testing the
SOA as a collection of web services that are working
together in a group. It, in fact, focuses on testing web
service interfaces to determine if communication and
information sharing between them are working correctly
and according to specifications.

Regression Testing: It is the process of re-testing an
SOA that has been lately modified or updated to ensure
that it does not fail due to the newly introduced repairs.
Since each time a defect is fixed, there is a possibility that
new errors get introduced, regression testing re-executes
previously successful tests and checks whether previously
working web services are still working correctly and
according to specifications.

Functional Testing: It is the process of testing the
basic functionalities of an SOA application. For example,
testing if a web service that is exposing an addition
function is able to add two numbers correctly and
according to specifications.

Non-Functional Testing: It is process of testing the
non-functional aspects of an SOA application which
includes such properties as quality, performance, security,
availability, interoperability, and other features already
agreed on in the design specification stage of the SOA
project.

4. SOA Testing Challenges

Testing SOA is somehow an intricate and a
challenging computing problem, and that is due to several
reasons, some of which are outlined below [11, 12]:

1. SOA are distributed in that they are composed of
web service components dispersed over different
hardware and operating system platforms; thus,
testing must cover the different deployment
configurations.

2. SOA are dynamic in that they implement adaptive
behaviors such as adding new services, integrating
new services, and removing old ones;
consequently, performing an effective regression
testing can be a challenging task.

3. SOA are complex in that they can be seen as a
mesh of interacting services each having specific
functionalities and capable of different operations;
thus, designing test cases for test automation can
be a complicated and a demanding task.

4. SOA are closed in that they are made out of closed
services that run on the provider’s side and clients
have no control over their implementations; thus,



Youssef Bassil, ACSA, Vol. 1, No. 1, pp. 9-15, March 2012 11

preventing white-box testing methods that are
essential to conduct exhaustive system validation.

5. SOA are remote in that their services are
commonly located on the provider’s server; and
therefore, testing SOA can be costly, especially, if
services are charged on a per-use basis. Moreover,
service providers could suffer from denial-of-
service (DoS) in case of massive testing.

6. SOA are heterogeneous in that their services
deliver no standard interfaces for inter-
communication as they are built using
incompatible technologies, platforms, and
programming languages; thus, it would be
necessary to build multiple types of test engines
each pertaining to a particular service platform.

5. Existing SOA Testing Approaches

This section reports the recent research achievements
related to SOA testing including basic unit testing,
distributed testing, testing by redundancy, integration
testing, and regression testing.

5.1. Basic Unit Testing

A basic unit testing was proposed by [13]. The idea
centers on testing individual web services using a test
case generator and a test case executer. The proposed
testing steps are as follows:

1. Code Generation: The necessary client code, also
known as test script, is generated. Its purpose is to
emulate a client consumer and to execute test
cases.

2. Test Case Generation: A test case generation
tool, the JCrasher, is used to generate test suites
which are mainly composed of test cases.

3. Test Execution: The generated test cases are
executed by invoking the various functions of the
web services under test. Web services responses
are then collected and validated against original
system’s specifications.

Figure 2 depicts the various modules of the basic unit
testing approach.

Figure 2. Typical Basic Unit Testing

Another basic unit testing technique was proposed by
[14]. The approach uses a test case generator to generate
test suites; a test engine executer to monitor the execution
of test cases; and a log file to store the URL of the web

service that has successfully passed the test. The
proposed testing steps are as follows:

1. Connect to a particular UDDI registry, possibly
located on the Internet, to search for a certain web
service component to test. Once its WSDL is
found, binding occurs between the web service,
now called WSUT (Web Service under Test), and
the testing framework.

2. The test case generator generates a test case that
contains a series of function calls and data
parameters. Afterwards, the test engine connects to
the WSUT and executes the test cases by calling
the functions of the WSUT through the SOAP
protocol. The test engine then receives the
response results from the WSUT and compares
them with the expected results.

3. If both results match, then the WSUT is confirmed
to pass the test, and its URL is saved into the log
file; otherwise, the WSUT is confirmed to be
defected and thus it is discarded.

4. The above steps are repeated for testing another
web service.

Figure 3 depicts the inner-workings of this approach.

Figure 3. Another Typical Basic Unit Testing

5.1.1. Drawbacks

1. Serial testing: The generation and execution of
test cases are done sequentially; parallelism or
distribution of testing processes is not exploited.

2. No support for regression testing: In case of an
update, all SOA components must be re-tested all
over again.

3. No support for integration testing: All web
services are tested in isolation; group testing is not
exploited.

4. Single-platform testing: only SOAP-based web
services can be tested; testing other types of web
services such as REST or RMI is not exploited.

5.2. Distributed Testing

A distributed SOA testing approach was presented by
[15] in which test cases are generated automatically based
on the WSDL of the web service under test. The WSDL
file is first parsed and transformed into a structured DOM
tree. Then, test cases are generated and executed by a
series of agents on distributed server machines. The



Youssef Bassil, ACSA, Vol. 1, No. 1, pp. 9-15, March 2012 12

approach employs multiple service brokers that can
perform SOA testing simultaneously, each of which is
equipped with a test case generator and a test execution
controller. Below are the different units of this proposed
distributed approach. Figure 4 shows the operation of
these components.

1. Test Case Generator: It connects to the WSDL of
the web service under test and automatically
generates the necessary test cases which will be
stored in a central database.

2. Test Execution Controller: It controls the
execution of test cases in a distributed
environment. Its job is to retrieve test cases from
the test database, assign them to test agents,
monitor test runs, and collect test results.

3. Test Agents: They are dispersed in a LAN or
WAN area. An agent is a proxy that performs
remote testing on target services with specific
usage profiles and test data.

4. Test analyzer: It analyzes test results, evaluates
the quality of services, and produces test reports.

Figure 4. Distributed Testing for SOA

5.2.1. Drawbacks

1. No support for regression testing: In case of an
update, all SOA components must be re-tested all
over again.

2. No support for integration testing: All web
services are tested in isolation; group testing is not
exploited.

3. Single-platform testing: only SOAP-based web
services can be tested; testing other types of web
services such as REST or RMI is not exploited.

5.3. Testing by Redundancy

[16] proposed a collaborative redundancy-based
verification and validation testing technique for SOA
applications. In this approach, testing is conducted by
evaluating multiple redundant web services at the same
time. Then using a voter, the test engine compares the
results of all web services under test. Only the web
service, whose output is different from the other ones, is
assumed to contain a fault. The advantage of this
approach is that it does not require generating or
implementing the client code. Evaluation is solely done
by voting. Figure 5 shows the basic test architecture of
this technique.

Figure 5. Testing By Redundancy

5.3.1. Drawbacks

Accuracy is dependent on the number of web services:
The system will perform poorly if the number of web
services is minimal; whereas, the precision of the voting
system will increase as more web service are evaluated.

5.4. Integration Testing

[17] proposed an XML-based testing framework
named Coyote for service integration testing in SOA.
Coyote consists of two modules: a test master and a test
engine. The test master allows testers to convert WSDL
specifications into test scenarios and test cases, as well as
performing non-functional analysis such as dependency,
completeness, and consistency analysis. On the other
hand, the test engine interacts with the web services under
test, and provides tracing information. Integration testing
is done during the development life cycle after the
completion of the system specification phase. Every sub-
system is tested using a stub proxy which houses all the
required test suites and test scripts. The testing process
goes top-down from the root SOA system to the leaf web
service. This way, every child web service is verified
whether it can communicate with its parent service. A
top-down approach has two foremost advantages: It is
easy to implement, and broken function calls and links
can be discovered more efficiently. Figure 6 depicts the
Coyote top-down testing approach.

Figure 6. Coyote Integration Testing

5.4.1. Drawbacks

1. Top-down approach: Bugs are harder to be found
and can interrupt the testing process.

2. No support for regression testing: In case of an
update, all SOA components must be re-tested all
over again.



Youssef Bassil, ACSA, Vol. 1, No. 1, pp. 9-15, March 2012 13

3. No support for integration testing: All web
services are tested in isolation; group testing is not
exploited.

4. Single-platform testing: only single-protocol web
services can be tested; testing multiple types of
web services such as REST or RMI is not
exploited.

5.5. Regression Testing

[18] proposed a regression testing approach for testing
SOA applications. The role of regression testing is to
uncover new software faults, called regressions, in
existing parts of a system after changes have been made
to them [19]. In this method, test cases are first generated,
and then read by a test harness module which executes
test cases over the various web services under test. The
test harness module then collects the web service
responses and stores them into a separate database to be
later compared if they match the expected results. In case
changes occur to the system, previously run tests are re-
executed to check whether or not the behavior of the
whole SOA system has changed. Figure 7 depicts the
regression testing architecture for SOA systems.

Figure 7. Regression Testing Architecture

5.5.1. Drawbacks

1. Test suites complexity: Test cases can be too
large if changes come in too fast.

2. Low performance: Exhaustive test can increase
the testing execution time and reserve a lot of
resources.

3. Single-platform testing: only single-protocol web
services can be tested; testing multiple types of
web services such as REST or RMI is not
exploited.

6. Proposed Testing Architecture

Based on the previous discussion of various SOA
testing techniques, it is obvious that most of them can
only support the testing of web services that are built
using homogeneous technologies. However, it is no
longer expected to test an SOA application that was
designed using unified standards and protocols.
Furthermore, all these previously discussed techniques
are single-server single-machine systems, in that, testing
multiple web services cannot be done in a parallel fashion
but sequentially one after the other.

This paper proposes a new automated, distributed,
cross-platform, and regression testing architecture for
SOA systems. It supports the testing of multiple web

services simultaneously using different instances of
testing elements executed over distributed servers. In
addition, it supports test planning and scheduling for
multiple types of web services built using heterogeneous
technologies, programming languages, and platforms.
Finally, it supports regression testing by re-running
previously executed test suites on the sub-systems that
changes have been made to them. Below are the basic
features and advantages of the proposed testing
architecture:

 Distributed: It is capable of testing multiple web
services concurrently on different machines,
achieving better performance and higher
throughput.

 Cross-Platform: It is capable of testing
heterogeneous web services built using different
platforms, different standards, and different
programming languages.

 Regression Testing: It is capable of partial testing
for system parts that have been changed recently,
improving the quality assurance efficiency
and reducing the time to re-validate SOA systems
after changes have been made to them.

From a design standpoint, the proposed testing
architecture consists of two parts: The part where the
SOA application under test executes and the part where
the testing framework executes. Figure 8 depicts these
two parts together with their units and modules.

Figure 8. Parts of the Proposed Testing Architecture

6.1. The SOA Part



Youssef Bassil, ACSA, Vol. 1, No. 1, pp. 9-15, March 2012 14

Essentially, the SOA part of the proposed testing
architecture is majorly composed of web services under
test, parallel agents, end-point adapters, and a central
middleware.

The web services under test can be of any type and
technology including SOAP, REST, .NET, Java or any X-
technology; thus, providing a cross testing platform for
SOA-based systems.

The parallel agents ensure a distributed testing by
working as load balancers that distribute the test-load
across multiple servers to achieve optimal resource
utilization and to maximize throughput during the testing
process. All test requests sent to web services under test
are allocated to a free agent that, in turn, allocates them in
a round robin fashion to any available back-end server
machine to process the request. Agents constantly go on
and off as test requests flow throughout the SOA.

Adapters are end-point connectors that bridge a test
request with its destination service. They provide
standardization and interoperability as they permit the
interaction between the test engine and the different web
services under test regardless of their underlying
technologies and standards.

Adapters are supported by a central middleware that
provides two interfaces: The first interface is from the
SOA under test side which is mainly represented by the
end-point adapters, and the second interface is from the
testing framework side. The latter provides a unified
XML interface to format test requests sent by the test
engine to the web services under test. The test engine,
through the middleware, sends XML-formatted test
requests to web services under test regardless of their
underlying technologies. The middleware then converts
the received XML test requests into a format that is
compatible with the addressed web service. As a result,
the middleware provides a transparent communication
between the test engine and the different web services of
the SOA under test despite their incompatible
technologies and platforms.

6.2. The Testing Framework Part

Basically, the testing framework is composed of
several units each having a particular task to achieve and
they are:

The test engine unit coordinates, controls, and
manages the various testing units and their processes, and
is capable of performing regression testing.

The test code generator unit generates test scripts and
client code necessary to execute the test cases.

The test case generator unit generates all test
scenarios, data suites, variables, and conditions necessary
to create test requests and function calls and parameters
for the web services under test.

The test executer unit executes the generated client
code on the test cases, dispatches test requests, and
collects testing results.

The test monitor unit evaluates and compares the
results obtained from the test executer unit and the results
obtained from the web services under test.

The database unit stores generated test cases along
with the IDs of the web services under test, in addition to
other miscellaneous testing parameters. In fact, the chief

purpose of the database is to assist in the regression
testing process. It permits the test engine unit to
effectively retrieve and re-use the proper minimum set of
previously stored test parameters and to execute them
whenever a partial change has been made to the SOA
application. That way, the test engine can check whether
the SOA behavior has changed and whether previously
fixed defects have recurred after fractional system
updates.

7. Experiments & Results

As a proof of concept, a sample SOA application was
tested using the proposed testing architecture. The target
was to test a SOAP-based web service to prove the
distributed testing capability of the parallel agents and the
cross-platform testing capability of the middleware. The
specifications for the conducted experimentation are
below:

 Web service under test: A web service that
contains an addition function to add two integer
numbers.

 Technology of the web service under test: SOAP
 ID of the web service under test: 5
 Test case: Calling function add(x, y) and sending

integers 10 and 20 as test parameters.
 Test code: Implementation of the add(x, y)

function.

Below is the sequence of steps that were executed
during the experimentation:

Step 1: The test code generator unit generated the
client code, and stored it into the database together with
the ID=5 of the service under test.
Step 2: The test case generator unit generated the test
case, namely the function call add(10, 20), and stored
it into the database together with the ID=5 of the
service under test.
Step 3: The test engine unit connected to the
middleware and sent through it a test request to the
SOAP-based web service under test in XML format.
The test request represents a particular test case
composed of a function call alongside with a set of data
parameters, in this case add(10, 20). The middleware
first received the test request message and converted it
from XML format into the protocol of the web service
under test, in this case the SOAP protocol.
Step 4: The middleware routed the converted test
request to the adapter that is compatible with the
service under test, in this case, the SOAP adapter.
Step 5: The adapter then located a free agent to handle
the test request. Once located, the free agent tried in
sequence to locate the best machine on the network to
process the request.
Step 6: The agent bound to the web service under test
which executed the test request and returned back the
integer 30 as the addition results of 10+20 in a SOAP
message. The SOAP adapter received the response and
routed it to the middleware. The middleware then



Youssef Bassil, ACSA, Vol. 1, No. 1, pp. 9-15, March 2012 15

converted the SOAP message into XML and forwarded
it to the test monitor unit.
Step 7: The test executer unit executed the client code
using the same test case, and reported the integer 30 as
results.
Step 8: The test monitor unit then compared the results
obtained from the web service response and the results
obtained from the test executer unit. As both results
matched, the executed test case was marked as
successful in the database. Generally, if both results
match, the corresponding test case is marked as
successful in the database; otherwise; it is flagged as
unsuccessful, and another test case is executed.

Below are two messages observed during the
experimentation: The first is the XML test request sent by
the test executer unit to the middleware, and the second is
its equivalent SOAP message converted by the
middleware and sent to the web service under test:

<request>
<WS-ID>5</WS-ID>
<function-to-call>add</function-to-call>
<parameters>

<param>10</param>
<param>20</param>

</ parameters >
<timestamp>2/25/2012 05:22:17PM </timestamp>

</request>

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>
<m:add>
<m:x>10</m:x>
<m:y>20</m:y>

</m:add>
</soap:Body>
</soap:Envelope>

It is worth noting that in case of performing regression
testing, only the test cases that were previously tested and
marked as successful and whose ID matches the ID of
web service that has been modified, are fetched from the
database and re-used to re-evaluate this particular web
service.

8. Conclusions & Future Work

This paper presented an extensive review for the
various methodologies and research achievements related
to SOA and web service testing. It, additionally,
discussed the different challenges that SOA applications
go through when testing their functional and non-
functional properties. Furthermore, this paper proposed a
novel architecture for testing SOA applications. It
supports the following features: Distributed testing by
employing parallel execution agents that can distribute
the testing process over multiple machines; cross-
platform testing by employing a central middleware that
provides interoperability between the testing framework
and the SOA application; and regression testing by
employing a database that stores all successfully executed
test cases so that they can be re-used to cover recent
system modifications. Essentially, the testing framework

comprises several testing units including test engine, test
code generator, test case generator, test executer, and test
monitor units. Experiments conducted showed that the
proposed testing architecture managed to use parallel
agents to allocate testing processes to distributed server
machines and succeeded in exploiting its middleware to
test heterogeneous web services whose technologies were
incompatible with the testing framework.

As future work, testing non-functional aspects of SOA
applications are to be investigated, bringing in a complete
testing solution that can not only test SOA functional
operations but also non-functional qualities such as
performance, security, availability, and scalability.

Acknowledgments

This research was funded by the Lebanese Association
for Computational Sciences (LACSC), Beirut, Lebanon,
under the “Simulation & Testing Research Project –
STRP2012”.

References
[1] Faisal Hoque, e-Enterprise: Business Models, Architecture, and

Components, Cambridge University Press, 2000.
[2] Thomas Erl, Service-Oriented Architecture: Concepts,

Technology, and Design, Prentice Hall, 2005.
[3] Offermann, P. Hoffmann, M. Bub, Benefits of SOA: Evaluation

of an implemented scenario against alternative architectures,
Enterprise Distributed Object Computing Conference Workshops,
EDOCW-2009, 13th, 2009.

[4] G. Canfora and M. Di Penta, Service-oriented architectures
testing: A survey, in Proceedings of the 31st International Spring
Seminar on Electronics Technology (ISSSE 2008), Budapest,
Hungary, 2008, pp. 78–105.

[5] Nicolai M. Josuttis, SOA in Practice, O’Reilly, 2007.
[6] Fielding, Roy T., Taylor, Richard N, Principled Design of the

Modern Web Architecture, ACM Transactions on Internet
Technology (TOIT), (2002), 2(2): 115–150.

[7] Ron Patton, Software Testing, 2nd ed., Sams Publishers, 2005.
[8] Cem Kaner, Exploratory Testing, Quality Assurance Institute

Worldwide Annual Software Testing Conference, Orlando, FL,
2006.

[9] G. Canfora and M. Di Penta, SOA: Testing and self-cheking, in
Proceedings of the International Workshop on Web Services
Modeling and Testing, Palermo, Italy, 2006, pp. 3–12.

[10] Luciano Baresi, Test and Analysis of Web Services, 1st ed.,
Springer, 2007.

[11] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, Whitening
SOA testing, in Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering,
Amsterdam, The Netherlands, 2009, pp. 161–170.

[12] Scott Barber, SOA Testing Challenges, Technical Report,
PerfTestPlus, 2006.

[13] [13] Evan Martin, Suranjana Basu and Tao Xie, Automated
robustness testing of web services, In Proceedings of the 4th
International Workshop on SOA And Web Services Best Practices
(SOAWS), 2006.

[14] Abbas Tarhini, Hacène Fouchal, Nashat Mansour: A Simple
Approach for Testing Web Service Based Applications, IICS,
2005, pp.134-146

[15] Bai, X., Dong, W., Tsai, W.T., Chen, Y., Wsdl-based automatic
test case generation for web services testing, In the IEEE
International Workshop on Service-Oriented System Engineering
(SOSE), Los Alamitos, CA, USA, IEEE Computer Society, 2005,
pp.215–220.

[16] Tsai, W.T., Chen, Y., Paul, R.A., Liao, N., Huang, H., Cooperative
and group testing in verification of dynamic composite web
services, In the Proceedings of the 28th International Computer
Software and Applications Conference (COMPSAC 2004), Hong
Kong, China, 2004, pp. 170–173.

[17] Tsai, W.T., Paul, R.J., Song, W., Cao, Z., Coyote: An XML-based
framework for Web services testing, In the 7th IEEE International
Symposium on High-Assurance Systems Engineering (HASE
2002), Tokyo, Japan, 2002, pp.173–176.

[18] Di Penta, M., Bruno, M., Esposito, G., Mazza, V., Canfora, G.,
web services regression testing, In Baresi, L., Nitto, E.D., eds.:
Test and Analysis of web Services, Springer, 2007, pp205–234.

[19] Glenford Myers, The Art of Software Testing, Wiley Publishers,
2004.


