

International Journal of Engineering and Technology Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 742

A Simulation Model for the Waterfall Software Development Life Cycle

Youssef Bassil
LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

ABSTRACT

Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and

industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to be

completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered

problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied clients. The major

reason for these deficiencies is that project directors are not wisely assigning the required number of workers and resources on the

various activities of the SDLC. Consequently, some SDLC phases with insufficient resources may be delayed; while, others with

excess resources may be idled, leading to a bottleneck between the arrival and delivery of projects and to a failure in delivering an

operational product on time and within budget. This paper proposes a simulation model for the Waterfall development process using

the Simphony.NET simulation tool whose role is to assist project managers in determining how to achieve the maximum

productivity with the minimum number of expenses, workers, and hours. It helps maximizing the utilization of development

processes by keeping all employees and resources busy all the time to keep pace with the arrival of projects and to decrease waste

and idle time. As future work, other SDLC models such as spiral and incremental are to be simulated, giving project executives the

choice to use a diversity of software development methodologies.

Keywords: Software Engineering, SDLC, Waterfall Model, Computer Simulation, Simphony.NET

1. INTRODUCTION

The process of building computer software and information

systems has been always dictated by different development

methodologies. A software development methodology refers

to the framework that is used to plan, manage, and control the

process of developing an information system [1]. Formally, a

software development methodology is known as SDLC short

for Software Development Life Cycle and is majorly used in

several engineering and industrial fields such as systems

engineering, software engineering, mechanical engineering,

computer science, computational sciences, and applied

engineering [2]. In effect, SDLC has been studied and

investigated by many researchers and practitioners all over

the world, and numerous models have been proposed, each

with its own acknowledged strengths and weaknesses. The

Waterfall, spiral, incremental, rational unified process (RUP),

rapid application development (RAD), agile software

development, and rapid prototyping are few to mention as

successful SDLC models. In a way or another, all SDLC

models suggested so far share basic properties. They all

consist of a sequence of phases or steps that must be followed

and completed by system designers and developers in order to

attain some results and deliver a final product. For instance,

the Waterfall model, one of the earliest SDLC models,

comprises five consecutive phases and they are respectively:

Business analysis, design, implementation, testing, and

maintenance. On the other hand, the incremental model has

seven phases and they are respectively: Planning,

requirements, analysis, implementation, deployment, testing,

and evaluation [3].

Due to the success of the Waterfall model, many software

development firms and industrial manufacturers have adopted

it as their prime development framework and SDLC to plan,

build, and maintain their products [4]. Additionally, these

firms went to the extreme by establishing several departments

each of which is run by a team of expert people totally

responsible for and dedicated to handle a particular phase of

the Waterfall model. This includes, for instance, business and

requirements analysis department, software engineering

department, development and programming department,

quality assurance (QA) department, and technical support

department.

However, assigning the exact and the appropriate number of

resources for each phase of the Waterfall model including

people, equipment, processes, time, effort, and budget was a

dilemma and confusion for project managers and directors to

achieve the maximum productivity with the minimum

number of expenses, workers, and hours. In that sense, it is

vital to find the optimal number of resources that should be

assigned in order to complete a specific task or phase. For

instance, project managers need to find out the number of

system analysts that should be hired to work on the business

analysis phase. They also need to know how many computers

are required for the implementation phase, and how many

testers should be acquired to cover all possible test cases

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 743

during the testing phase. In order to answer all these

questions, a simulation for the SDLC is needed so as to

estimate the appropriate number of resources necessary to

fulfill a certain project of a certain scale.

Relatedly, a computer simulation is a computer program that

tries to simulate an abstract model of a particular system. In

practice, simulations can be employed to discover the

behavior, to estimate the outcome, and to analyze the

operation of systems [5].

This paper proposes a simulation model to simulate and

mimic the Waterfall SDLC development process from the

analysis to the maintenance phase using the Simphony.NET

computer simulation tool. The model simulates the different

stakeholders involved in the Waterfall model which are

essential throughout the whole development process. They

include the software solution to design and develop; the

employees such as designers and programmers; the different

Waterfall phases; and the workflow of every Waterfall task.

Furthermore, the proposed simulation takes into consideration

three different types of software solutions based on their

complexity and scale. The simulation also measures the rate

of projects arrival, the rate of projects delivery, and the

utilization of various resources during every phase and task.

The goal of the proposed simulation is to identify the optimal

number of resources needed to keep the company up with the

continuous flow of incoming projects using the minimal

amount of workers, time, and budget.

2. THE WATERFALL SDLC MODEL

The Waterfall SDLC model is a sequential software

development process in which progress is regarded as flowing

increasingly downwards (similar to a waterfall) through a list

of phases that must be executed in order to successfully build

a computer software. Originally, the Waterfall model was

proposed by Winston W. Royce in 1970 to describe a

possible software engineering practice [6]. The Waterfall

model defines several consecutive phases that must be

completed one after the other and moving to the next phase

only when its preceding phase is completely done. For this

reason, the Waterfall model is recursive in that each phase

can be endlessly repeated until it is perfected. Fig. 1 depicts

the different phases of the SDLC Waterfall model.

Fig. 1: The Waterfall model

Essentially, the Waterfall model comprises five phases:

Analysis, design, implementation, testing, and maintenance.

Analysis Phase: Often known as Software Requirements

Specification (SRS) is a complete and comprehensive

description of the behavior of the software to be developed. It

implicates system and business analysts to define both

functional and non-functional requirements. Usually,

functional requirements are defined by means of use cases

which describe the users’ interactions with the software. They

include such requirements as purpose, scope, perspective,

functions, software attributes, user characteristics,

functionalities specifications, interface requirements, and

database requirements. In contrast, the non-functional

requirements refer to the various criteria, constraints,

limitations, and requirements imposed on the design and

operation of the software rather than on particular behaviors.

It includes such properties as reliability, scalability,

testability, availability, maintainability, performance, and

quality standards.

Design Phase: It is the process of planning and problem

solving for a software solution. It implicates software

developers and designers to define the plan for a solution

which includes algorithm design, software architecture

design, database conceptual schema and logical diagram

design, concept design, graphical user interface design, and

data structure definition.

Implementation Phase: It refers to the realization of business

requirements and design specifications into a concrete

executable program, database, website, or software

component through programming and deployment. This

phase is where the real code is written and compiled into an

operational application, and where the database and text files

are created. In other words, it is the process of converting the

whole requirements and blueprints into a production

environment.

Testing Phase: It is also known as verification and validation

which is a process for checking that a software solution meets

the original requirements and specifications and that it

accomplishes its intended purpose. In fact, verification is the

process of evaluating software to determine whether the

products of a given development phase satisfy the conditions

imposed at the start of that phase; while, validation is the

process of evaluating software during or at the end of the

development process to determine whether it satisfies

specified requirements [7]. Moreover, the testing phase is the

outlet to perform debugging in which bugs and system

glitches are found, corrected, and refined accordingly.

Maintenance Phase: It is the process of modifying a software

solution after delivery and deployment to refine output,

correct errors, and improve performance and quality.

Additional maintenance activities can be performed in this

phase including adapting software to its environment,

accommodating new user requirements, and increasing

software reliability [8].

http://en.wikipedia.org/wiki/Software_testability
http://en.wikipedia.org/wiki/Quality_(business)

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 744

3. RELATED WORK

 [9] proposed a simulation planning that must be completed

prior to starting any development process. Its purpose is to

identify the structure of the project development plan and to

classify what must be simulated, the degree of simulation,

and how to use the simulation results for future planning.

Moreover, the approach takes into consideration such issues

as configuration requirements, design constraints,

development criteria, problem reporting and resolution, and

analysis of input and output data sets. [10] described three

types of simulation methodologies. The first is called

“simulation as software engineering” and revolves around

simulating the delivery of a product. This comprises the use

of large simulation models to represent a real system at the

production environment. The second is called “simulation as

a process of organizational change” and revolves around the

delivery of a service. This comprises the use of temporary

small-scale models to simulate small-scale tasks and

processes. The third is called “simulation as facilitation” and

revolves around understanding and debating about a problem

situation. This comprises using “quick-and-dirty” very small-

scale models to simulate minute-by-minute processes. [11]

proposed the use of simulation as facilitation based on system

dynamics. The model proposes the simulation of three

development stages: The conceptualization stage which

simulates problem situation and system objectives; the

development stage which simulates the coding, verification,

validation, and calibration processes; and the facilitation stage

which simulates group learning around the model, project

findings, and project recommendations. [12] proposed a

guideline to be followed for performing a simulation study

for software development life cycles. It is composed of ten

processes, ten phases, and thirteen reliability evaluation

stages. Its purpose is to assess the credibility of every stage

after simulation and match it with the initial requirements and

specifications. The model provides one of the most

documented descriptions for simulating life-cycles in the

software engineering field [13]. [14] proposed a software

engineering process simulation model called SEPS for the

dynamic simulation of software development life cycles. It is

based on using feedback principles of system dynamics to

simulate communications and interactions among the

different SDLC phases and activities from a dynamic systems

perspective. Basically, SEPS is a planning tool meant to

improve the decision-making of managers in controlling the

projects outcome in terms of cost, time, and functionalities.

[15] proposed a discrete open source event simulation model

for simulating the programming and the testing stages of a

software development process using MathLab. The model

investigates the results of adopting different tactics for coding

and testing a new software system. It is oriented toward pair

programming in which a programmer writes the code and the

simulation acts as an observer which reviews the code and

return feedback to the original programmer. In effect, this

approach automates the testing and the reviewing processes

and promotes best programming practices to deliver the most

reliable and accurate code. [16] proposed an intelligent

computerized tool for simulating the different phases of a

generic SDLC. It is intended to help managers and project

directors in better planning, managing, and controlling the

development process of medium-scale software projects. The

model is based on system dynamics to simulate the dynamic

interaction between the different phases of the development

process taking into consideration the existence of imprecise

parameters that are treated as fuzzy-logic variables.

4. PROBLEM DEFINITION &

MOTIVATIONS

In practice, software development projects have regularly

encountered problems and shortcomings that resulted in

noteworthy delays and cost overruns, as well as occasional

total failures [17]. In effect, the software development life

cycle of software systems has been plagued by budget

overrun, late or postponed deliveries, and disappointed

customers [18]. A deep investigation about this issue was

conducted by the Standish Group [19], it showed that many

projects do not deliver on-time, do not deliver on budget, and

do not deliver as expected or required. The major reason for

this is that project managers are not intelligently assigning the

required number of employees and resources on the various

activities of the SDLC. For this reason, some SDLC phases

may be delayed due to the insufficient number of workers;

while, other dependent phases may stay idle, doing nothing,

but waiting for other phases to get completed. Consequently,

this produces a bottleneck between the arrival and delivery of

projects which leads to a failure in delivering a functional

product on time, within budget, and to an agreed level of

quality.

The proposed simulation for the Waterfall model is aimed at

finding the trade-offs of cost, schedule, and functionality for

the benefit of the project outcome. It helps maximizing the

utilization of development processes by keeping all

employees and resources busy all the time to keep pace with

the incoming projects and reduce waste and idle time. As a

result, the optimal productivity is reached with the least

possible number of employees and resources, delivering

projects within the right schedule, budget, and conforming to

the initial business needs and requirements.

5. THE SIMULATION MODEL

This paper proposes a simulation model to simulate the

different phases of the Waterfall SDLC model including all

related resources, input, workflow, and output. The

simulation process is carried out using a simulation tool

called Simphony.NET [20] which provides an adequate

environment to create, manage, and control the different

simulation entities. The purpose of this simulation is to

guarantee that the interval-time between each project arrival

is equal to the interval-time between each project production.

In other words, if a new project is emerging every 10 days, a

project must be delivered every other 10 days, taking into

consideration that the optimal number of employees should

be assigned to every project, that is the number of idle and

busy resources should be kept as minimum as possible.

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 745

Generally speaking, the proposed simulation process consists

of the following steps:

1. Run the simulation, examine the data produced by the

simulation,

2. Find changes to be made to the model based on the

analysis of data produced by the simulation,

3. Repeat as much as it takes to reach the optimal results.

Technically speaking, the simulation process of the Waterfall

model consists of the following steps:

1. Divide the Waterfall model into independent phases,

2. Understand the concept and the requirements that lie

behind every phase,

3. Define the resources, tasks, entities, and the work flow

of every phase,

4. Simulate each phase apart and record results,

5. Integrate the whole phases together, simulate the

system, and record results.

5.1 Assumptions and Specifications

Prior to simulating the Waterfall model, a number of

assumptions and specifications must be clearly made.

Basically, projects arrive randomly at a software firm with

inter-arrival time from a Triangular distribution with a lower

limit of 30 days, an upper limit of 40 days, and a mode of 35

days. The probability density function is then given as:

Projects can be divided into three groups based on their

complexity and scale: 70% of the projects are small-scale

projects, 25% are medium-scale projects, and 5% are large-

scale projects.

Each project will require a different mix of specialists,

employees, and resources to be delivered based on the scale

of the project:

 Small-scale projects require 1 business analyst, 1

designer, 2 programmers, 2 testers, and 1

maintenance man.

 Medium-scale projects require 2 business analyst, 2

designer, 4 programmers, 6 testers, and 2

maintenance man.

 Large-scale projects require 5 business analyst, 5

designer, 10 programmers, 20 testers, and 5

maintenance man.

Assuming that the resources available at the software firm are

the following:

 5 Business Analyst

 5 Designers

 10 Programmers

 20 Testers

 5 Maintenance Men

And assuming that there exist the following tasks:

 Business Analysis

 Design

 Implementation

 Testing

 Maintenance

And assuming that the duration for every phase to be

completed is defined as follows:

The business analysis phase requires a Uniform distribution

with a lower limit of 3 days and an upper limit of 5 days.

The design phase requires a Uniform distribution with a

lower limit of 5 days and an upper limit of 10 days.

The implementation phase requires a Uniform distribution

with a lower limit of 15 days and an upper limit of 20 days.

The testing phase requires a Uniform distribution with a

lower limit of 5 days and an upper limit of 10 days.

The maintenance phase requires a Uniform distribution with a

lower limit of 1 day and an upper limit of 3 days.

And assuming that each phase upon completion is subject to

the following errors:

 There is a 10% probability that a small-scale project

will have an error

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 746

 There is a 20% probability that a medium-scale

project will have an error

 There is a 30% probability that a large-scale project

will have an error

5.2 The Simphony Model

The proposed simulation model is built using the

Simphony.NET simulation tool [20]. In fact, Simphony.NET

consists of a working environment and a foundation library

that allow the development of new simulation scenarios in an

easy and efficient manner. A project in Simphony.NET is

made out of a collection of modeling elements linked to each

other by logical relationships.

Essentially, the proposed model consists of a set of resource,

queue, task, probability branch, capture, release, and counter

modeling elements. The resources are the basic employees

and workers assigned to work on the phases of the Waterfall

model. Each resource has a FIFO queue which accumulates

and stores processing events to be processed later. Fig. 2

depicts the resource modeling elements along with their

counts and queues. They are respectively the business analyst,

the designer, the programmer, the tester, and the maintenance

man.

Fig. 2: Resource modeling elements

On the other hand, the Waterfall phases are modeled as a set

of task modeling elements each with a capture and release

elements. The capture element binds a particular resource to a

particular task and the release element releases the resource

from the task when it is completed.

Additionally, several probability branch elements exist

between the different tasks of the model whose purpose is to

simulate the error probability that a Waterfall task might

exhibit after completion. The probability element has two

branches: Branch 1 with Prob=0.1 denotes that 10% of the

small-scale projects are subject to errors; and branch 2 with

Prob=0.9 denotes that 90% of the small-scale projects will not

exhibit errors after the completion of every phase. These

branches simulate the recursive property of the waterfall

model to loop over the preceding task if an error was found in

the current task.

Moreover, another probability branch element exists at the

beginning of every project development cycle whose purpose

is to simulate the scale of projects under development. It

actually has three branches: Branch 1 with Prob=0.7 denotes

that 70% of the incoming projects are small-scale; branch 2

with Prob=0.25 denotes that 25% of the incoming projects are

medium-scale; and branch 3 with Prob=0.05 denotes that 5%

of the incoming projects are large-scale.

The model starts with a new entity element which sets the

number of incoming projects and a counter that counts the

number of projects being received, and ends with another

counter that counts the number of projects being delivered.

Fig. 3 shows the simulation model for the different phases of

the Waterfall development process without going deeply into

modeling every type of projects. However, Fig. 4 shows the

different modeling elements for simulating small-scale type

projects.

Fig. 3: Simulation model for the Waterfall SDLC

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 747

 Fig. 4: Simulation model for small-scale type projects

5.3 Running the Simulation

The simulation model was executed 5 times, for 1500

milliseconds (2.5 minutes) with 50 incoming projects using

the Simphony.NET environment. Table 1 delineates the

obtained statistics including the number of projects received

and delivered, in addition to the ArT mean time. Table 2

delineates the average utilization of every resource after the

completion of the simulation. Furthermore, a graphical

representation for resource utilization is plotted in Fig. 5 for

the programmer resource; while, Fig. 6 is for the designer

resource.

TABLE I: Statistics Obtained for Simulating the

Waterfall Model

small-scale projects received ArT Mean

35 52.09

medium-scale projects received ArT Mean

10 130.45

large-scale projects received ArT Mean

5 426.29

Total number of projects received: 50

Average ArT Mean: 34.46

small-scale projects delivered ArT Mean

35 53.37

medium-scale projects delivered ArT Mean

10 134.84

large-scale projects delivered ArT Mean

5 448.23

Total number of projects delivered: 50

Average ArT Mean: 35.55

TABLE II: Simulated Resources with their Average

Utilization

Resource
Average

Utilization

Business Analysts 5.2

Designers 11.6

Programmers 21.02

Testers 7.4

Maintenance Men 2.09

Fig. 5: Utilization of the programmer resource

Fig. 6: Utilization of the designer resource

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 748

5.4 Results Interpretation

The results obtained after running the simulation for many

times using the Simphony.NET simulator, clearly showed

that the system reached the optimal state when the total

number of projects received was equal to the total number of

project delivered. In fact, 50 projects were delivered out of 50

without any loss in time or schedule. Additionally, the results

helped in pin pointing the optimal number of resources

needed to handle the different phases of the waterfall model.

The optimal number of required analysts is 5.2, the optimal

number of required designers is 11.6, the optimal number of

required programmers is 21.02, the optimal number of

required testers is 7.4, and the optimal number of required

maintenance men is 2.09. These numbers of resources are

considered to be the necessary number of workers needed to

keep the company up with the continuous flow of incoming

projects, in this particular case, dispatching and producing

exactly 50 projects on time and within budget.

6. CONCLUSIONS & FUTURE WORK

This paper proposed a simulation model for simulating the

Waterfall software development life cycle using the

Simphony.NET simulator tool. It consists of simulating all

entities of the Waterfall model including, software solutions

to be developed, operational resources, employees, tasks, and

phases. Its aim was to assist project managers in determining

the optimal number of resources required to produce a

particular project within the allotted schedule and budget.

Experiments showed that the proposed model proved to be

accurate as it accurately calculated the number of optimal

resources required to accomplish a particular software

solution based on their utilization metric.

As future work, other SDLC models such as spiral and

incremental are to be simulated, allowing project managers to

select among a diversity of software development

methodologies to support their decision-making and planning

needs.

ACKNOWLEDGMENT

This research was funded by the Lebanese Association for

Computational Sciences (LACSC), Beirut, Lebanon, under

the “Simulation & Testing Research Project – STRP2012”.

REFERENCES

[1] Ian Sommerville, Software Engineering, Addison

Wesley, 9th ed., 2010.

[2] Richard H. Thayer, and Barry W. Boehm, “software

engineering project management”, Computer Society

Press of the IEEE, pp.130, 1986.

[3] Craig Larman and Victor Basili, “Iterative and

Incremental Development: A Brief History”, IEEE

Computer, 2003.

[4] N. Munassar and A. Govardhan, “A Comparison

Between Five Models Of Software Engineering”, IJCSI

International Journal of Computer Science Issues, vol.

7, no. 5, 2010.

[5] P. Humphreys, Extending Ourselves: Computational

Science, Empiricism, and Scientific Method, Oxford

University Press, 2004.

[6] Royce, W., “Managing the Development of Large

Software Systems”, Proceedings of IEEE WESCON 26,

pp.1-9, 1970.

[7] IEEE-STD-610, A Compilation of IEEE Standard

Computer Glossaries, IEEE Standard Computer

Dictionary, 1991.

[8] Andrew Stellman, Jennifer Greene, Applied Software

Project Management, O'Reilly Media, 2005.

[9] Jim Ledin, “Simulation Planning” PE, Ledin

Engineering, 2000.

[10] Robinson, S., “Modes of simulation practice:

approaches to business and military simulation”,

Proceedings in Simulation Modeling Practice and

Theory, vol. 10, pp. 513-523 , 2002.

[11] Robinson, S., “Soft with a hard centre: discrete-event

simulation in facilitation”, Journal of the Operational

Research Society, vol. 52, pp. 905-915 , 2001.

[12] Balci, O., “Guidelines for successful simulation

studies”, Proceedings of the Simulation Conference, pp.

25-32, New Orleans, LA, 1990.

[13] R. Sargent, R. Nance, C. Overstreet, S. Robinson, and J.

Talbot, “The simulation project life-cycle: models and

realities”, Proceedings of the Winter Simulation

Conference, 2006.

[14] Chi Y Lin, Tarek Abdel-Hamid, and Joseph S Sherif,

“Software-Engineering Process Simulation model

(SEPS)”, Journal of Systems and Software, Vol. 38, no.

3, pp. 263-277, 1997.

[15] Shmuel Ur, Elad Yom-Tov and Paul Wernick, An Open

Source Simulation Model of Software Development and

Testing, Hardware and Software, Verification and

Testing, Lecture Notes in Computer Science, Springer,

vol. 4383, pp. 124-137, 2007.

[16] Reuven R. Levary, Chi Y. Lin, “Modeling the Software

Development Process Using an Expert Simulation

System Having Fuzzy Logic”, Journal of Software,

Practice and Experience, vol. 21, no. 2, pp.133-148,

1991.

[17] B. Boehm and K.J. Sullivan, “Software Economics:

Status and Prospects,” Special Millenium Issue,

Information and Software Technology, 2000.

http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375
http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375
http://en.wikipedia.org/wiki/Oxford_University_Press
http://en.wikipedia.org/wiki/Oxford_University_Press
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.springerlink.com/content/?Author=Shmuel+Ur
http://www.springerlink.com/content/?Author=Elad+Yom-Tov
http://www.springerlink.com/content/?Author=Paul+Wernick
http://www.springerlink.com/content/0302-9743/

International Journal of Engineering and Technology (IJET) – Volume 2 No. 5, May, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 749

[18] Leung, H., and Fan, Z., Software Cost Estimation.

Handbook of Software Engineering, Hong Kong

Polytechnic University 2002.

[19] Extreme Chaos (2001), Standish Group, [Online].

Available:

http://

standishgroup.com/sample_research/extreme_chaos.pdf

[20] Simphony.NET (2005), University of Alberta, [Online].

Available:

http://irc.construction.ualberta.ca/html/research/softwar

e/simphony.net.html

