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ABSTRACT 

In theoretical computer science, combinatorial optimization problems are about 

finding an optimal item from a finite set of objects. Combinatorial optimization is 

the process of searching for maxima or minima of an unbiased function whose 

domain is a discrete and large configuration space. It often involves determining 

the way to efficiently allocate resources used to find solutions to mathematical 

problems. Applications for combinatorial optimization include determining the 

optimal way to deliver packages in logistics applications, determining taxis best 

route to reach a destination address, and determining the best allocation of jobs 

to people. Some common problems involving combinatorial optimizations are 

the Knapsack problem, the Job Assignment problem, and the Travelling 

Salesman problem. This paper proposes three new optimized algorithms for 

solving three combinatorial optimization problems namely the Knapsack 

problem, the Job Assignment problem, and the Traveling Salesman respectively. 

The Knapsack problem is about finding the most valuable subset of items that fit 

into the knapsack. The Job Assignment problem is about assigning a person to a 

job with the lowest total cost possible. The Traveling Salesman problem is about 

finding the shortest tour to a destination city through travelling a given set of 

cities. Each problem is to be tackled separately. First, the design is proposed, 

then the pseudo code is created along with analyzing its time complexity. Finally, 

the algorithm is implemented using a high-level programming language. As 

future work, the proposed algorithms are to be parallelized so that they can 

execute on multiprocessing environments making their execution time faster 

and more scalable. 

 

 

KEYWORDS: Combinatorial Algorithms, Optimization Techniques, Knapsack, Job 

Assignment, Traveling Salesman 
 

I. KNAPSACK PROBLEM 

The knapsack problem is a problem in combinatorial 

optimization [1]. Given n items of weights w1, w2….wn 

and values v1, v2…vn and a knapsack (container) of 

capacity W. The problem is to find the most valuable 

subset of items that fit into the knapsack [2]. 

 

A. Proposed Solution 

The algorithms is based on exhaustive search 

approach which suggests generating every 

combinational object of the problem and performing 

the appropriate calculations. The algorithm use three 

one-dimentional arrays, one to store the item 

weights, another one to store the item values, and a 

last one to store the generated subsets. 

 

B. Design 

Figure 1 shows the process flow diagram of the 

Knapsack problem design 

 

 

 

 

 
Figure 1: Process Flow for the Knapsack problem 

 

C. Algorithm 

//ALGORITHM Knapsack (itemsValue[n], items 

Weight[n]) 

// Knapsack Problem 

// INPUT: itemsValue[n] , itemsWeight[n] 

// OUTPUT: optimalSubset: array of integers 
 

ITEMS_COUNT: integer constant that holds the # of 

items 

itemsValue[n]: array of integers that holds item 

Values  

itemsWeight[n]: array of integers that holds item 

Weights 
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bitString[ITEMS_COUNT]: array of flags that holds a 

particular subset 

optimalSubset[ITEMS_COUNT]: array of flags that 

holds the subset of items with highest total value  

knapsackCapacity : integer that holds the Capacity of 

the Knapsack 

optimalValue: integer that holds the highest Value 

calculated after each subset 

sumValues: integer that holds the sum of all items 

values for a given subset 

sumWeights: integer that holds the sum of all items 

weights for a given subset 

 

BEGIN 

optimalValue � 0  
 

// Step1: Generates integer numbers 

FOR i <- 0 TO Pow(2,ITEMS_COUNT) DO 

{ 

// Step2: Convert integer Numbers to binary 

numbers 

// Step3: Generating Subsets 

j <- 0 

WHILE i<>0  

{ 

bitString[j] � i MOD 2 

i � i/2  

} 
 

// Step4: Calculate the Item values 

corresponding to each subset 

sumValues<-0  

sumWeights<-0  
 

FOR k <- 0 TO ITEMS_COUNT DO 

{ 

// Replaces TRUE flag with its corresponding 

Item value 

IF bitString[k] = TRUE THEN 

{ 

sumValues <- sumValues + itemsValue[k]  

sumWeights <- sumWeights + 

itemsWeight[k]  

} 
 

k � k+1 

} 
 

// Step5: Store the highest value with its 

corresponding subset 

IF (sumWeights <= knapsackCapacity  

                    AND sumValues > optimalValue) 

THEN 

{ 

optimalValue <- sumValues  
 

FOR p�0 TO ITEMS_COUNT DO 

{ 

optimalSubset[p] <- bitString[p] 

p <- p+1 

}  

} 
  

i � i+1 
 

} // end of step1 FOR LOOP 

 // Step6: Return the Subset that has highest Items 

value 
 

RETURN optimalSubset 
 

END 

D. Analysis 

The proposed algorithm can find the optimal subset 

of items with their corresponding optimal value while 

falling under the below efficiency class: 

Knapsack (a[n],b[n]) €  O  n2   (n2 > n) 

Knapsack (a[n],b[n]) €  Ω  1    (1 < n) 

Knapsack (a[n],b[n]) €  Ф  n    (n = n) 

 

Performance wise, it requires about 9 milliseconds to 

handle the problem with 50 items. 

 

E. Implementation 

Figure 2 depicts the screenshot of the program that 

implements the Knapsack problem using C#.NET [3]. 

 

 
Figure 2: The Knapsack Program 

 

II. JOB ASSIGNMENT PROBLEM   

The assignment problem is a fundamental 

combinatorial optimization problem [4]. Given n 

people who need to be assigned to n jobs , one person 

per job. The cost of ith person is assigned to jth job is 

stored in table[i][j]. The problem is to find an 

assignment with the lowest total cost [5]. 

 

A. Proposed Solution 

Developing an algorithms based on the brute force 

techinque which tests and evaluates all possible 

objects combinations involved in the problem and 

performs appropriate calculations. The algorithm 

uses a one-dimentational array to store permutations 

and a two-dimentinal array to store Person/Job cost 

 

B. Design 

Figure 3 shows the process flow diagram of the Job 

Assignment problem design 

 
Figure 3: Process Flow for the Job Assignment 

problem 

 

C. Algorithm 

// ALGORITHM Assignment (table[n][n] , COUNTER) 

// Person/Job Assignment Problem 

// INPUT: table[n][n] , COUNTER 
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// OUTPUT: optimalList : array of integers 
  

table[n][n]: 2D integer array that Stores all costs 

entered by the user 

COUNTER: integer that holds the # of persons(or the 

# of jobs) 

list[COUNTER]: array of integers that holds 

permutation 

pointers[COUNTER]: array of integers that holds 

present direction of each permutation 

increasingPtr[COUNTER]: array of integers that holds 

left to right arrows -> -> -> .... 

decreasingPtr[COUNTER]: array of integers that holds 

right to left arrows <- <- <- .... 

optimalSum: integer that holds the lower cost per 

person/job assignment 

optimalList [COUNTER]: array of integers that holds 

the permutation with the lower cost 

mobile: integer that holds the mobile element 

mobileIndex: integer that holds the index of the 

mobile element 

flag: boolean variable that indicates if a mobile exists 

or not 

temp: integer used FOR swapping purposes 

sum: integer that holds the cost of a particular 

permutation instance 

         

BEGIN 

optimalSum � INFINITY 
 

//Fill array lists with 1 2 3 4 5 6....(depending on 

variable COUNTER) 

FOR i�0 TO COUNTER DO 

{ 

list[i] � i+1 

i � i+1  

} 
 

//Initialize pointers <- <- <- .... 

FOR i � COUNTER-1 TO 0 DO 

{ 

pointers[i] � i-1 

i � i+1 

}  
 

//Initialize increasingPtr -> -> -> .... 

FOR i�0 TO COUNTER DO 

{ 

increasingPtr[i] � i+1 

i � i+1  

}  
    

//Initialize decreasingPtr <- <- <- .... 

FOR i�COUNTER-1 TO 0 DO 

{ 

decreasingPtr[i] � i-1 

i � i+1  

} 
 

// Johnson-Trotter ALGORTIHM 

// Generates Permutations 

FOR i�0 TO fac(COUNTER)-1 DO 

{ 

//Calculate the cost for each permutation 

instance 

sum � 0  

FOR j�0 TO COUNTER DO 

{ 

sum � sum+table[j,list[j]-1] 

j � j+1  

} 
 

// Holds the lowest sum 

IF sum < optimalSum THEN 

{ 

optimalSum � sum  

FOR k�0 TO COUNTER DO 

{ 

optimalList[k]�list[k] 

k � k+1  

}  

} 
 

      mobile � 0  

      mobileIndex � 0  

      flag � false  
 

     //Step1 : Find the largest Mobile 
 

FOR i�0 TO COUNTER DO 

{ 

IF(pointers[i]<>1 && pointers[i]<>COUNTER  

AND list[i]>mobile AND 

list[pointers[i]]<list[i])  

THEN 

{ 

mobile <- list[i]  

mobileIndex <- i  

flag <- TRUE   

} 
 

i � i+1  

} 
 

// Step2: test whether a mobile was found 

// Step3: Swap the mobile with the element that it 

points to 

// Step4: Swap the pointers of mobile and the 

element that it points to 

// Step5: Reverse Directions of all elements that 

are greater than mob  
 

IF flag=TRUE THEN 

{ 

// Swap the mobile with the element that it 

points to 
 

list[mobileIndex] � list[pointers[mobileIndex]]  

list[pointers[mobileIndex]] � mobile 
 

IF(pointers[pointers[mobileIndex]]=mobileInde

x) THEN 

{ 

// Indicates the mobile is at the left side 

IF(pointers[mobileIndex] > mobileIndex) 

THEN 

{ 

// Swap the pointers of mobile and the 

element that it points to 

Temp�pointers[pointers[mobileIndex]]  
                 

pointers[pointers[mobileIndex]]�pointers

[mobileIndex]+1  

pointers[mobileIndex]�temp-1  

} 

ELSE // Indicates the mobile is at the right 

side 

{ 

// Swap the pointers of mobile and the 

element that it points to 
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Temp�pointers[pointers[mobileIndex]]  
               

pointers[pointers[mobileIndex]]�pointer

s[mobileIndex]-1  

pointers[mobileIndex]�temp+1  

} 

} 

} 
 

// Reverse Directions 
 

FOR i�0 TO COUNTER DO 

{ 

IF list[i]>mobile THEN 

IF pointers[i]�increasingPtr[i] THEN   

pointers[i]�decreasingPtr[i]       

ELSE IF pointers[i]�decreasingPtr[i] THEN  

pointers[i]�increasingPtr[i] 
 

i � i+1    

}     

    } 
 

    //Calculate the cost FOR the last permutation 

instance 

    sum � 0  
 

    FOR j�0 TO COUNTER DO 

    { 

sum � sum+table[j,list[j]-1] 

j � j+1  

     } 
 

     // Holds the lowest sum 

     IF sum < optimalSum THEN 

     { 

optimalSum � sum  

FOR  k�0 TO COUNTER DO 

{ 

optimalList[k]�list[k]  

k � k+1  

} 

} 
 

// optimal list should hold the less costly 

person/job assignment 

RETURN optimalList 
 

END 
 

D. Analysis 

The proposed algorithm can find the optimal 

person/job assignment with its corresponding lowest 

cost. It is very practical even on large number of 

persons, however it exhausts processing time due to 

Johnson-trotter algorithm [6] whose order of growth 

is always exponential. The algorithm falls under the 

below efficiency class: 

Assignment (table[n][n] , c) €  O  n3   (n3 > n2) 

Assignment (table[n][n] , c) €  Ω  n    (n < n2) 

Assignment (table[n][n] , c) €  Ф  n2   (n2 = n2) 

 

Performance wise, it requires 12 seconds to handle a 

problem with 100 jobs 100! = 9.33262154439441 

52681699238856267e+157 permutations 

 

E. Implementation 

Figure 4 depicts the screenshot of the program that 

implements the Job Assignment problem using 

C#.NET. 

 

 
Figure 4: The Job Assignment Program 

 

III. TRAVELING SALESMAN PROBLEM 

The Traveling Salesman Problem is a classic 

algorithmic problem in the field of computer science 

that focuses on optimization [7]. The problem ask to 

find the shortest tour through a given set of n cities or 

nodes that visits each city exactly once before 

returning to the city where it started [8].  

 

A. Proposed Solution 

Exaustive search technique is so far the most 

appropriate appraoch to solve this problem. It 

consists of generating all possible paths with their 

correponding lengths so eventually the shortest path 

can be identified. The algorithm uses a one-

dimentional array to store permutations, a one-

dimentional array to store distinct cities, and a two-

dimentional array to store from city, to city, and 

length variables. 

 

B. Design 

Figure 5 shows the process flow diagram for the 

Traveling Salesman problem design 

 

 
Figure 5: Process Flow for the Traveling Salesman 

problem 

 

C. Algorithm 

// ALGORITHM Salesman(table[n][3] , startCity) 

// Person/Job Assignment Problem 

// INPUT: table[n][n] , startCity 

// OUTPUT: optimalList : array of characters 

 

cities[citiesCounter]: array of characters holds Distinct 

cities 

newList[citiesCounter+1]: array of characters that 

holds: startcity+permutation+startcity  

citiesCounter: integer holds # of distinct cities 

startCity: Character holds the name of the start city 

table[n][3]: 2D integer array that Stores all routes 

with their corresponding length 

list[citiesCounter-1]: array of characters that holds 

permutation 

pointers[citiesCounter-1]: array of integers that holds 

present direction of each permutation 
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increasingPtr[citiesCounter-1]: array of integers that 

holds left to right arrows -> -> ->  

decreasingPtr[citiesCounter-1]: array of integers that 

holds right to left arrows <- <- <-  

optimalSum: integer that holds the shortest path 

summation 

optimalList[citiesCounter+1]: array of characters that 

holds the permutation with the shortest path 

mobile: integer that holds the mobile element 

mobileIndex: integer that holds the index of the 

mobile element 

flag: boolean variable that indicates if a mobile exists 

or not 

temp: integer used for swapping purposes 

sum: integer that holds the cost of a particular 

permutation instance  

 

BEGIN 

//Step1: Recognize and store in array cities only 

the distinct cities 

i�0  
   

WHILE(i<citiesCounter) DO 

{ 

IF table[i][1]<>cities[i] THEN 

i<-i+1  

ELSE  

{ 

i � citiesCounter+1 

s � i 

} 

} 
 

// Adding the found city to the array 

IF i=citiesCounter THEN 

{ 

cities[citiesCounter]� table[s][1]  

citiesCounter � citiesCounter+1  

} 
 

//Step2: create an array named list that contains all 

distinct cities 

k�0  

FOR i�0 TO citiesCounter DO 

{ 

IF cities[i] <> startCity THEN 

{ 

list[k]�cities[i]  

k � k+1 

} 
 

i � i+1 

} 
 

//Initialize pointers <- <- <- .... 

FOR i � citiesCounter-1 TO 0 DO 

{ 

pointers[i] � i-1 

i � i+1 

}  
 

//Initialize increasingPtr -> -> -> .... 

FOR i�0 TO citiesCounter DO 

{ 

increasingPtr[i] � i+1 

i � i+1  

}  
    

 

//Initialize decreasingPtr <- <- <- .... 

FOR i�citiesCounter-1 TO 0 DO 

{ 

decreasingPtr[i] � i-1 

i � i+1  

} 
 

FOR i�0 TO fac(citiesCounter)-1 DO 

{ 

// Step3 : Add the startcity at the beginning & at 

the end 

newList[0]�startCity  
 

k � 1  

FOR s�0 TO citiesCounter DO 

{ 

newList[k]�list[s] 

k �k+1 

s �s+1 

} 
 

newList[citiesCounter]<-startCity  
   

//Step4: Calculate Length 
 

Sum�0  

i�0 

j�0  
 

WHILE i<citiesCounter-1 AND j<n-1 DO 

{ 

IF(newList[i]=table[j,0] AND 

newList[i+1]=table[j,1])  

THEN 

{ 

Sum�sum+table[j,2] 

i�i+1 

j�0  

} 

ELSE j�j+1  

} 
 

// store the shortest path 

IF sum < optimalSum THEN 

{ 

optimalSum�sum  

FOR s�0 TO s<citiesCounter DO 

{ 

optimalList[s]�newList[s] 

s � s+1 

}  

} 
 

// Johnson-Trotter ALGORTIHM 

// Step5: Generates Permutations    

mobile � ' ' // small value 

mobileIndex � 0  

flag � FALSE  
 

// Step1 : Find the largest Mobile 
 

FOR i�0 TO citiesCounter DO 

{ 

IF(pointers[i]<>1 AND 

pointers[i]<>citiesCounter-1  

AND list[i]>mobile AND 

list[pointers[i]]<list[i])  

THEN 

{ 

mobile � list[i]  

mobileIndex � i  
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flag � true   

} 
 

i � i+1  

} 
 

//Step2: test whether a mobile was found 

//Step3: Swap the mobile with the element that 

it points to 

//Step4: Swap the pointers of mobile and the 

element that it points to 

//Step5: Reverse Directions of all elements that 

are greater than mobile 

IF flag=TRUE THEN 

{ 

// Swap the mobile with the element that it 

points to 
 

 

list[mobileIndex] � 

list[pointers[mobileIndex]]    

list[pointers[mobileIndex]] � mobile 
 
 

IF(pointers[pointers[mobileIndex]]=mobileIn

dex) THEN 

{ 

// Indicates the mobile is at the left side 

IF(pointers[mobileIndex] > mobileIndex) 

THEN 

{ 

// Swap the pointers of mobile and the 

element that it points to 

Temp�pointers[pointers[mobileIndex]]  
          

pointers[pointers[mobileIndex]]�pointer

s[mobileIndex]+1  

 pointers[mobileIndex]�temp-1  

} 

ELSE // Indicates the mobile is at the right 

side 

{ 

// Swap the pointers of mobile and the 

element that it points to 

Temp�pointers[pointers[mobileIndex]]  
         

pointers[pointers[mobileIndex]]�pointer

s[mobileIndex]-1  

 pointers[mobileIndex]�temp+1  

} 

} 

} 
 

 

// Reverse Directions 
 

FOR i�0 TO citiesCounter DO 

{ 

IF list[i]>mobile THEN 

IF pointers[i]�increasingPtr[i] THEN 

pointers[i]�decreasingPtr[i]       

ELSE IF pointers[i]�decreasingPtr[i] THEN 

pointers[i]�increasingPtr[i] 

 

i � i+1    

}   

} 
 

RETURN optimalList 
 

END 

 

D. Analysis 

The proposed algorithm can find the shortest path 

among many alternatives starting from a given city, 

passing through all the available cities only once to 

end at the same starting point. Even though it is based 

on Johnson-Trotter algorithm to generate 

permutations, the proposed algorithm is considered 

quite efficient due to the complexity of the original 

problem. Therefore to solve a complex problem such 

the traveling salesman problem, somehow you are 

going to lose some processing time. The algorithm 

falls under the below efficiency class: 

 

Salesman (table[n][3] , sCity) €  O  n3   (n3 > n2) 

Salesman (table[n][3] , sCity) €  Ω  n    (n < n2) 

Salesman (table[n][3] , sCity) €  Ф  n2   (n2 = n2) 

 

Performance wise, it requires 17 seconds for a 

problem with 100 cities 

(100! = 9.3326215443944152681699238856267e+157 

permutations) 

 

E. Implementation 

Figure 6 depicts the screenshot of the program that 

implements the Traveling Salesman problem using 

C#.NET. 

 

 
Figure 6: The Traveling Salesman Program 

 

IV. Conclusions & Future Work 

This paper proposed three new optimized algorithms 

for solving three combinatorial optimization 

problems namely the Knapsack problem, the Job 

Assignment problem, and the Traveling Salesman 

problem respectively. Each problem was tackled from 

a design, analysis, and implementation point of views. 

The proposed designs showed the optimized versions 

of the algorithms while listing their complete pseudo 

code. Furthermore, a thorough time complexity 

analysis was performed to finally end up 

implementing the algorithms and testing them using 

C#.NET.  

 

As future work, the proposed algorithms are to be 

parallelized using multithreading and 

multiprogramming techniques so as to speeding up 

their execution time and making them more 

adaptable to large computing architectures. 
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