

 International Journal of Advanced Research and Publications
 ISSN: 2456-9992

 Volume 3 Issue 3, March 2019
 www.ijarp.org

141

Memory-Based Multi-Processing Method For Big

Data Computation

Youssef Bassil

LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

youssef.bassil@lacsc.org

Abstract: The evolution of the Internet and computer applications have generated colossal amount of data. They are referred to as Big Data

and they consist of huge volume, high velocity, and variable datasets that need to be managed at the right speed and within the right time

frame to allow real-time data processing and analysis. Several Big Data solutions were developed, however they are all based on distributed

computing which can be sometimes expensive to build, manage, troubleshoot, and secure. This paper proposes a novel method for

processing Big Data using memory-based, multi-processing, and one-server architecture. It is memory-based because data are loaded into

memory prior to start processing. It is multi-processing because it leverages the power of parallel programming using shared memory and

multiple threads running over several CPUs in a concurrent fashion. It is one-server because it only requires a single server that operates in a

non-distributed computing environment. The foremost advantages of the proposed method are high performance, low cost, and ease of

management. The experiments conducted showed outstanding results as the proposed method outperformed other conventional methods that

currently exist on the market. Further research can improve upon the proposed method so that it supports message passing between its

different processes using remote procedure calls among other techniques.

Keywords: Big-Data, Multi-processing, Shared Memory

1. Introduction

The rapid growth of the Internet in addition to the evolution

of electronic businesses and applications have led to the

rising of large volume of datasets and to million or even

billion of distributed data. These data are often unstructured,

complex, and way too large for traditional data management

applications to adequately deal with and process. Thus, the

term Big Data was coined which refers to the data assets

characterized by such a high volume, velocity, and diversity

to require specific technologies and analytical methods for

their transformation into information [1]. It has been

estimated that data have roughly doubled every 40 months

since the 1980s [2]. As of 2012, every day 2.5 Exabytes of

data are generated [3]. Moreover, the global data volume will

grow exponentially from 4.4 to 44 Zettabytes between 2013

and 2020 [4]. By 2025, there will be 163 Zettabytes of data

stored and shared among digital systems [5]. Today, Big

Data is perceived as having at least three shared

characteristics: Extremely large volumes of data, extremely

high velocity of data, and extremely wide variety of data [6].

In fact, organizations today are at a tipping point in data

management. They have stirred from the era where the

technology was used to support a particular business need,

such as determining how many items were sold or how many

items are still in stock, to a time when organizations have

more data from more sources than ever before.

Consequently, Big Data has become an eminent problem for

large enterprises to manage their digital assets and resources

[7]. For this reason, creating new ways, methodologies, and

algorithms for managing Big Data is what every industry

must seek if it needs to survive for the next era of computing

and thereby is regarded as the most important upcoming

challenge facing the world of information technology [8].

This paper proposes a Memory-Based, Multi-Processing, and

One-Server method for processing Big Data. It is memory-

based as it allocates data in computer's high-speed primary

memory prior to processing using high-performance data

structures such a hash tables. It is multi-processing as it

exploits parallel programming techniques to manipulate data

over multi-processor/core systems using multithreading. It is

one-server as it only requires a single server with multiple

processors or cores rather than a network of distributed

servers. As a result, since the latency time of computer's

primary memory is way faster than the latency time of

secondary storage, and since parallel computing is more

powerful than its sequential counterpart, the processing and

manipulation of Big Data using the proposed method would

from a performance perspective sky-rocket delivering

outcomes at very high speed, faster than any other type of

Big Data solutions available today on the market.

2. Big Data

Big Data is a big umbrella that comprises such many

activities as capturing, storing, and processing high volume

of data. Additionally, Big Data involves the capability to

manage a huge volume of disparate data, at the right speed,

and within the right time frame to allow real-time data

processing and analysis. Typically, Big Data is characterized

by three properties: Volume of data, Velocity of data, and

Variety of Data, sometimes referred to as the "Three Vs" [9].

The real innovation in Big Data happened as enterprises like

Google and Yahoo came to the realization that they require

state-of-the-art algorithms and software to manage the

massive amounts of data they were generating. This would

allow them to process, store, access, and analyze immense

volumes of data in near real-time. In particular, the solutions

MapReduce [10], Big Table [11], and Hadoop [12] proved to

be the spark that led to a new generation of data

management. These technologies address one of the most

fundamental problems of Big Data, namely the capability to

process massive volumes of data efficiently, cost-effectively,

and in a timely fashion.

2.1 MapReduce

MapReduce [13] was designed by Google to efficiently

execute a set of functions against a huge amount of data in

batch mode. The “Map” component in the MapReduce

system distributes the processing of data across several

systems and handles the load of various operations in a

reliable and efficient way. Once the distributed computation

 International Journal of Advanced Research and Publications
 ISSN: 2456-9992

 Volume 3 Issue 3, March 2019
 www.ijarp.org

142

is completed, another component called “Reduce” aggregates

the output from the different systems to convey the final

results. Basically, MapReduce comprises two basic

processing functions:

1. The “Map” function: The master node reads a particular

input entry, divides it into smaller sub-problems, and

allocates them to worker nodes. A worker node may also

divides the received problem into more granular tasks.

The worker nodes eventually complete the processing of

data and pass the results back to the master node.

2. The “Reduce” function: The master node collects the

results of all the processed sub-problems and combines

them into a final output.

2.2 Big Table

BigTable [14] is also another innovation built by Google as a

distributed storage system intended to manage highly

scalable data. In this system, data are organized into tables

with rows and columns. Unlike conventional relational

database models, Big Table is a distributed, non-volatile, and

multi-dimensional sorted map. It is designed to store large

amount of data over distributed computers and servers. In

essence, BigTable maps two random string indexes, row and

column indexes, into an associated random cell that can hold

a single data item. The storage tables in the BigTable system

are optimized for the Google File System (GFS) [15] and has

the capability to dynamically scale up into Petabyte range

across thousands of machines to cope with the growth of data

and information. Likewise, when data sizes loom to grow

beyond a certain limit, the BigTable system employs the

BMDiff and the Zippy compression algorithms to compress

data and reduce their size [16].

2.3 Hadoop

Hadoop [17] is a collection of software utilities developed by

Apache to allow the manipulation of Big Data using a cluster

of many computers. It provides a software framework for

distributed storage and processing of Big Data using the

MapReduce programming model and the Google File

System. Hadoop uses HDFS short for Hadoop Distributed

File System [18] which allows applications based on

MapReduce model to run on a network of computer nodes.

In fact, Hadoop is made up of two major components: a

scalable distributed file system called HDFS that supports

Exabytes of data using a network of cost-effective high

bandwidth data storage; and a scalable MapReduce engine

that solves computational problems in batch mode by

breaking down big problems into smaller sub-problems so

that data processing can be done quickly, efficiently, and in

parallel fashion.

3. Problems & Challenges

Inherently, MapReduce is based on distributed computing in

that it requires several server nodes to operate over several

datasets. This would lead to a large system made up of a

large number of machines that in practice is expensive to

implement, hard to manage and troubleshoot, and subject to

reliability and security issues. BigTable on the other hand is

more like a file system than an algorithm for searching and

manipulating a large dataset of information. In other terms,

BigTable distributes a relational database onto several server

nodes each of which has a partial section of the original data.

Moreover, BigTable requires the configuration of multiple

servers to run in a distributed fashion. This would also have a

negative impact on the cost of the system from an

implementation, deployment, management, reliability, and

security point of view. Similarly, Hadoop is an

implementation of MapReduce combined with BigTable and

therefore it shares the same disadvantages previously

aforementioned, namely the cost and burden of maintaining a

network of machines. In a nutshell, the disadvantages of the

existing Big Data systems can be summarized as follows:

 High Cost: Building an infrastructure with dozens of

computers can prove to be expensive.

 Hard to Manage: A large distributed infrastructure

often requires many experts and labors to operate,

maintain, and troubleshoot.

 Low Reliability: Distributed computing is usually

dependable on communication networks. Therefore, it

is susceptible to network problems such as network

errors, link errors, and traffic saturation.

 Low Security: Security is delicate when dealing with

networked computers and non-isolated distributed

systems. This is not to mention that distributed servers

may span over various and remote geographical sites

making them more prone to breaches and attacks.

4. The Proposed Method

This paper proposes a method for processing Big Data using

Memory-based, Multi-Processing, and One-server set-up. It

is memory-based because data are loaded into computer's

primary memory prior to processing. It is multi-processing

because it leverages the power of parallel computing to

perform computation in a simultaneous fashion using

multiple cores and shared memory. It is one-server because it

only requires one single server machine with possible several

CPUs and cores that operate in a non-distributed

environment.

4.1 Memory-Based

Fundamentally, a memory-based data management is a

technique that relies on computer's high-speed primary

memory such as RAM for storing data during processing. It

is contrasted with disk-based data management which uses

low-speed secondary storage such as hard disks, flash drives,

and optical disks as a mean to access data. Interestingly, as

primary memory is made up of high-speed electronic ships, it

is hundred times more efficient than secondary disks.

Besides, a computer's primary memory has low latency time

as opposed to mechanical and optical disks which eliminates

the seek and spinning time when querying and searching for

data [18]. The proposed method loads data from computer's

secondary storage into the computer's RAM prior to

processing. In other words, records and fields of data are

copied from database, majorly stored on hard disks, into

computer's RAM just before the processing is started. The

proposed method employs a special Hash Table data

structure to allocate data in primary memory in an organized,

structured, and accessible way. Basically, a hash table is an

associative array abstract data type that maps index keys to

values [19]. A hash table often uses a hash function to

compute an index key that points to the exact location of data

in the hash table. Ideally, the hash function will assign each

key to a unique location in memory. Figure 1 depicts a Hash

Table having phone numbers stored per key username.

 International Journal of Advanced Research and Publications
 ISSN: 2456-9992

 Volume 3 Issue 3, March 2019
 www.ijarp.org

143

Figure 1: Hash Table Organization

4.2 Muli-Processing

Essentially, multi-processing, also known as parallel

processing, is the use of two or more central processing units

or cores within a single computer system to execute multiple

computational threads of a program [20]. Multi-processing

can make program execution faster because there are simply

more engines (whether CPUs or cores) to process

instructions. Today, and with the advent of hardware

technologies, most CPUs have more than one core,

sometimes four, eight, sixteen and even 24 cores as in the

Intel Xeon Processor E7-8890 v4 [21]. Moreover, more

advanced workstations and data center servers can have

multiple CPUs on the same motherboard each in turn having

multiple cores. The proposed method uses Shared Memory

techniques and Multithreading in order to implement parallel

processing. In computing, Shared Memory is an efficient

means of passing data between programs or threads of a

program [22]. On the other hand, multithreading is a type of

execution model that allows multiple threads to exist within

the context of a process such that they execute independently

but share their process resources including memory, cache,

and CPU registers [23]. A thread maintains a list of

information relevant to its execution including the priority

schedule, exception handlers, a set of CPU registers, and

stack state in the address space of its hosting process. In the

context of parallel processing, a computer program is divided

into several threads each having the ability to execute

separately and concurrently on a separate CPU or core.

Figure 2 illustrates how a program can be divided into

multiple threads that can execute in parallel.

Figure 2: Multithreading

The proposed method forks a thread for every subset of Hash

Table from primary memory and assigns it to a particular

core or CPU to execute. For instance, if the computer system

is equipped with n processors/cores, n threads are spawned

and n Hash tables are created, such as T={ (t1,h1), (t2,h2),

(t3,h3), (tn-1,th-1) } where each thread t in T is assigned a

particular Hash Table h to work on.

4.3 One-Server Architecture

The proposed method is based on a one-server architecture,

in that it only requires a single server or computer to operate.

This is in contrast to other existing architectures which

require a network of servers that operate in a distributed

computing environment. The proposed method divides Big

Data problems into threads running over multiple processors

on a single server machine, instead of dividing it over

multiple servers in a distributed computing configuration.

This has many advantages especially on the cost,

management, reliability, and security such as the following:

 Cost: Building an infrastructure with few computers

and machines can prove to be cheaper to implement

than its distributed counterpart.

 Management: A one-server architecture requires less

experts and labors to operate, maintain, and

troubleshoot.

 Reliability: A one-server set-up is not dependable on

communication networks as in distributed computing.

Therefore, it is not susceptible to network issues such

as network faults, latency, quality of service, and

throughput overload.

 Security: Attaining security is minimal when dealing

with a small number of machines. The one-server

architecture is normally not connected to any network

and is installed in a single room and under a single

ultra-tight surveillance, therefore it is isolated from

hacking threats, eavesdropping, and network attacks.

5. Experiments & Results

As a proof of concept, the proposed method is implemented

using C#.NET and the .NET Framework 4.5. Additionally, a

relational database is created using MS Office Access

containing two million records pertaining to book inventory

data. The database is made up of a single table comprising

three fields namely “ISBN13”, “price”, and “quantity”.

Figure 3 depicts some sample records from the database.

Figure 3: Database Sample Records

Furthermore, a stock file named “Stock.dat” is created

containing two million entries of fresh data each of which

consists of three tokens “ISBN13”, “price”, and “quantity”

respectively. A sample record from the stock file would look

like “9783652774577$3.93$495$” where 9783652774577 is

the ISBN13, 3.93 is the new price, and 494 is the new

 International Journal of Advanced Research and Publications
 ISSN: 2456-9992

 Volume 3 Issue 3, March 2019
 www.ijarp.org

144

quantity. Figure 4 is a snapshot showing some of the records

from the stock file.

Figure 4: Sample Records from the Stock File

Likewise, two software applications are built using C#.NET

whose purpose is to update the two million records in the

database with new prices and quantities extracted from the

stock file. The first application implements a conventional

algorithm that accesses the database stored on local disk and

updates its content based on data from the stock file. On the

other hand, the second application implements the proposed

method using hash tables and multithreading. Similar to the

first application, the task of the second application is to read

content from the stock file and update the database

accordingly. Nevertheless, it makes full use of the proposed

algorithm by harnessing the in-memory and the multi-

processing concepts. Technically speaking, the second

application loads all database records into hash tables and

stores them in computer's primary memory, then during

processing, multiple threads are created each of which is

assigned a particular core or processor to work on a

particular chunk of the hash table. Figure 5 depicts the

application that implements the proposed method.

Figure 5: GUI Interface of the Proposed Application

In the experiments, both applications were executed to

update the 2 million records each using its own algorithm.

The platform used is a server computer featuring two Intel

Xeon CPUs each of which having a 2.53 GHz clock speed

and 6 cores. Thus making a total of 12 executing units that

are able to execute 12 threads simultaneously. The system's

primary memory is 16 GB of DDR3-SDRAM; while the

secondary storage is a 1TB SATA non-SSD hard disk. Table

1 outlines the different results obtained; whereas, Figure 6

conveys the tabular data into a graphical histogram.

Table 1: Experiments Results

of Records

to Update
100,000 500,000

1

million

1.5

million

2

million

Execution

Time using

Conventional

App

1h 50m

02s

8h 12m

15s

17h
47m

32s

27h
02m

05s

34h
17m

51s

Execution

Time using

Proposed

App

0h 0m
04s

0h 0m
06s

0h 0m
16s

0h 0m
32s

0h 1m
03s

Figure 6: Experiments Results Histogram

The results that were obtained in the experiments clearly

showed that the application that uses the proposed method

overhauled the other application that uses a conventional

algorithm. The reasons behind this outstanding performance

can be summarized as follows:

1. Memory-based: Characteristically, the latency time of

secondary storage, mainly hard disk, is much slower

than the latency time of primary memory mainly RAM.

In a nutshell, latency time is the delay time between the

moment the CPU tells the memory to access a

particular bit, and the moment the bit from the memory

is available to the CPU. The latency time for a hard

disk is on average of 10ms (milliseconds = 10
-3

 of a

second); while, it is on the average of 10ns

(nanoseconds = 10
-9

 of a second) for RAM. That is a

speed-up of 10,000,000% or 10 million times faster.

2. Multi-Processing: Basically, in sequential processing,

only a single instruction composing an application can

be executed at any given time. For example, let’s say

that an instruction over a particular CPU needs 1

second to execute and there is an application comprised

of 10 instructions, this would require 10 seconds to

fully execute the whole application. However, in multi-

processing, multiple CPUs/Cores are used to execute

multiple instructions simultaneously in parallel fashion.

Back to the previous example, using a computer with

10 CPUs or 10 Cores would require only 1 second to

execute the whole application that is composed of 10

instructions. As a result, the execution speed is divided

over the number of CPUs/Cores such as TotalExTime

= ExTimePerInstr/N where N is the total number of

CPUs or cores in the computer.

 International Journal of Advanced Research and Publications
 ISSN: 2456-9992

 Volume 3 Issue 3, March 2019
 www.ijarp.org

145

6. Conclusions

This paper proposed a method for processing Big Data using

memory-based, multi-processing, and one-server

architecture. It is memory-based as it processes data in

memory using hash tables. It is multi-processing as it uses

shared memory and multithreading to carry out

computations, and it is one-server as it only requires a single

server that operates in a non-distributed computing

environment. The experimentations revealed very solid and

impressive results when the proposed method was tested

against conventional disk-based approaches. As a result,

several contributions were made, they include Performance

manifested by the proposed method being able to process

Big Data at high-speed, faster than using any other

traditional data processing technique; Low cost which is

what the proposed method excels at as it delivers fast

execution time using only one server architecture, deployed

in an uncomplicated configuration of non-distributed

computers; and Ease of management manifested by the

proposed method being centralized and implemented over a

single computer, it is then easier on operators to manage it,

maintain it, and secure it, unlike other existing methods

which require a large distributed infrastructure with many

experts and workers to operate.

7. Future Work

The proposed method can be improved upon so much so that

it can support not only relational databases but also

unstructured data such a text and web documents. Moreover,

message passing is to be investigated which is a form of

communication used in parallel processing between different

running processes or applications. Several techniques can be

exploited in this regard including but not limited to RPC,

Networking Sockets, and Web Services.

Acknowledgments

This research was funded by the Lebanese Association for

Computational Sciences (LACSC), Beirut, Lebanon, under

the “Big Data Research Project – BDRP2019”.

References

[1] Andrea De Mauro, Marco Greco, Michele Grimaldi, "A

Formal definition of Big Data based on its essential

Features", Library Review, vol. 65, no.3, pp. 122–135,

2016

[2] Ceylan Onay, Elif Öztürk, "A review of credit scoring

research in the age of Big Data", Journal of Financial

Regulation and Compliance, vol. 26, no. 3, pp.382–

405, 2018.

[3] "IBM what is big data? – Bringing big data to the

enterprise", www.ibm.com. Retrieved 26 August 2013.

[4] Makrufa Hajirahimova, Aybeniz Aliyeva, "About Big

Data Measurement Methodologies and Indicators",

International Journal of Modern Education and

Computer Science, vol. 9, no. 10, pp.1–9, 2017

[5] O.J. Reichman, M.B. Jones, M.P. Schildhauer,

"Challenges and Opportunities of Open Data in

Ecology", Science, vol. 331, no. 6018, pp. 703–5, 2011

[6] Boyd, D., Crawford, K., “Critical Questions for Big

Data”, Information, Communication & Society, Vol. 15

Issue 5 pp. 662, 2012.

[7] Toby Segaran, Jeff Hammerbacher, "Beautiful Data:

The Stories Behind Elegant Data Solutions", O'Reilly

Media, ISBN 978-0-596-15711-1, 2009

[8] Snijders, C.; Matzat, U.; Reips, U.-D., "Big Data: Big

gaps of knowledge in the field of Internet",

International Journal of Internet Science, vol. 7, pp. 1–

5, 2012.

[9] Thomas H. Davenport, “Big Data at Work: Dispelling

the Myths, Uncovering the Opportunities”, Harvard

Business Review Press, 2014.

[10] Marozzo, F., Talia, D., Trunfio, P., “P2P-MapReduce:

Parallel data processing in dynamic Cloud

environments”, Journal of Computer and System

Sciences, Vol. 78 Issue. 5, pp.1382, 2012.

[11] Aswini Kumar, Andrew Whitchcock, “Google's

BigTable”, Google Research, pp. 20-55, 2005.

[12] Ashlee Vance, “Hadoop, a Free Software Program,

Finds Uses Beyond Search”, The New York Times,

Retrieved 2010-01-20.

[13] Lämmel, R, "Google's Map Reduce Programming

Model", Science of Computer Programming, vol. 70,

pp. 1–30, 2008

[14] Fay Chang et al, "Bigtable: A Distributed Storage

System for Structured Data", ACM Transactions on

Computer Systems, vol. 26, no. 2, 2008

[15] S. Ghemawat, H. Gobioff, S.T. Leung, "The Google

file system", Proceedings of the nineteenth ACM

Symposium on Operating Systems Principles, vol 1, p.

29, 2003.

[16] J. Bentley, D. McIlroy, "Data compression using long

common strings", Proc. IEEE Data Compression

Conference, pp.287-295, 1999.

[17] Lam, Chuck, "Hadoop in Action", 1st ed., Manning

Publications, ISBN 1935182196, 2010

[18] David A. Patterson and John L. Hennessy, “Computer

Organization and Design, the Hardware/Software

Interface” 5th Edition, The Morgan Kaufmann Series,

2013.

[19] Anany Levitin, “Introduction to the Design and

Analysis of Algorithms”, 3rd Edition, Addison-Wesley,

2011.

[20] John Ford, “Multiprocessing”, BYTE magazine, Vol.

10, Issue. 05, pp. 169, 1985.

[21] Intel Cooperation, Intel® Xeon® Processor E7-8890

v4, "https://www.intel.com/content/www/us/en/

 International Journal of Advanced Research and Publications
 ISSN: 2456-9992

 Volume 3 Issue 3, March 2019
 www.ijarp.org

146

products/processors/xeon/e7-processors/e7-8890-

v4.html", retrieved Feb 2019

[22] Boja, C, Pocovnicu, A, Batagan, L, “Distributed

Parallel Architecture for Big Data”, Informatica

Economica, Vol. 16 Issue. 2, pp. 116–127, 2012.

[23] B. Wilkinson and M. Allen, “Parallel Programming:

Techniques and Applications Using Networked

Workstations and Parallel Computers”, 2nd Edition,

Prentice Hall, 2004.

